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A mult‘resolution signal processing algorithm (YMRSI®) was devised to max-
imize the detection range of imaging infrared seekers against ship targets. Image-
based fimulations performed on an IBM PC AT verify that the new algorithm
provj Véignal-to-noise enhancement (relative to-hot-spot deteciion) given
by N5, where N,,, is the number of pixels ;é:oupied by the target in the
image, and y ¥ 0.8. The processor efficiency, 1, is remarkably invariant with
respect to/sensor/ship range (ie., scale), viewing aspect, and ship class.
Probabilifies of detection, determined via 2500 image-based Monte Carlo
simulatidns, agree with well-known analogous results of psychophysical ex-
perimegits perfarmed with human subjects. A new method is presented for
supresding false\ alarms caused by cloud reflections from the sea surface.
Regardless of whether final target classification is performed on-board the
missije by a computer algorithm or off-board by a person inspecting imagery
telenjetered from the missile, MRSI substantiaily improves predicted system
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1.0 INTRODUCTION AND SUMMARY

Self-guided missiles have on a number of recent oc-
casions demonstrated high effectiveness in operations
against surface ships [1). Both infrared (IR) and radio
frequency (RF) mean; haw: historically each found ap-
plication as the sensing element in antiship missile
(ASM) guidance units. Some well-known advantages
of IR technology in this application include [2]

@ passive operation,
@ good resistance to jamming, and
@ high spatial resolution.

The impetus for high spatial resolution follnws from
potential operational needs for target classificacion:
assuming ade;1ate signal to-noise ratio (SNR), high
classification accuracy requires Ligh spatial resolution,
regardless of whether the imagery is interpreted by a
man(3,4] or processed by a computer [5]. Perhaps the
key limitation of IR ASM seekers is limited range per-
formance under conditions of poor atmospheric
visibility. Thus, the purpose of the signal processor
described in this report (referred to as “MRSI” for
Multi-Resulution Spatial Integrator) is to perform
detection of targets having minimum conirast relative
to their background, in a digitized two-dimensional
image. The MRSI processing approach could be used
to optimize the detection range of infrared sensors
against large area targets such as ships.

Means previously investigated for maximizing IR
sensor SNR, relevant to the ASM seeker application,
include waveband optimization [6,7), advanced IR
detector developments [8,9], and multi-frame image
processing {10]. Nonetheless, acquisit:on range remains
an important performance index, and improvemen:s
in acquisition range an important objective, in the
design of next generation antiship seekers. The single-
frame signal processing approach discussed in this
report is complementary to earlier approaches for SNR
optimization.

The idea for our new signal processing concept was
anticipated by a brief study indicating that detection
ranges obtained by human observers of visual displays
could under a broad variety of conditions greatly ex-
ceed ranges obtained by a hot-spo: detection algorithm
(11). (This analysis was based on IR ship signatures
cataloged in [12] and the human observer/display
model provided in {3,4).) Thus, the predicted perfor-
mance of an archetypal “human observer” became for
us the standard against which to guage the perfor-
mance of proposed ship detection algorithms. A

13

similar outlook was adopted in [13] for assessing the
performance of a digitally-implemented autotracker
algorithm.

Our proposed solution to the ship detection problem
is comprised of a separable multi-resolution filter,
which we refer to as a Multi-Resolution Spatial In-
tegrator (MRSI), first described in [14].

An early multi-resolution processing application in-
volved the use of quad trees for encoding 1-bit images
{15]. A variety of additional multi-resolution image
processing applications and computational methods
and costs are discussed in [16,17). The multi-resolution
processor discussed in this report is highly specializ-
ed to maximize SNR against rectangular and nearly-
rectangular targets of known orientation, but whose
size, aspect ratio, and position in the image are
unknown. The MRSI approach is by design ideally
cuited for processing data from a linear array scann-
ing sensor, i.e,, image data acquired sequentially by
column.

The time domain responses and SNR enhancement
provided by MRSI processing are amenable to exact
analvtical computation for only a few geometrically
simple target shapes. A number of such analytically
predictable processor responses was used to validate
a general image-based computer simulation. Test
targets used for thic purpose included point targets,
bar targets, white gaussian noise, and bar targets in
noise. The computer simulatinn was then exercised
against a variety of ship images representative prin-
cipally of frigates and aircraft carriers, seen from
ranges of from $ to 30 nautical miles (nmi) at viewing
aspects from 90° (beam) to 10> Threshold SNRs for
detection were established in simulation by adding to
cach test image progressively increasing levels of noise.

It was found that MRSI processing, under a broa *
variety of conditions, provides about ten-fold SNk
enhancement (*‘processing gain”) relative to hot-spot
detection. Moreover, the processing gain turns out to
have been computable, with no more than atout 10%
maximum error in every crse, as

G = 7Npy m

where N,,, is the number of pixels occupied by the
target in the image, and 7 is given by

7 = 0.81. )

The processing constant, v, is remarkably invariant

- e g . N ——_‘_‘m
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with respect to sensor/ship range (i.e., scale), viewing
aspect, and ship type.

The existance of a simply-computed analytical ex-
pression for processing gain, Eq. 1, is in itself a signifi-
cant result, as it eliminates the need to perform image-
based simulations in connection with cost/perfor-
mance trade studies involving such additional aspects
of design as focal plane sensitivity requirements. Also,
an expression for »n has been derived that can be
evaluated simply from ship profiles, such as those pro-
vided in Jane’s Figl htip_g Ships [18). Consequently, our
results are readily generalized to ship types other than
those for which detailed simulations have been con-
ducted. At least as regards first-order system perfor-
mance assessments, Eq. | may be used as a vastly
simpler substitute for detailed image-based
simulations.

The principal simulation results are plots of detec-
tion probability (Py) vs. SNR (cf. Figs. 42 and 43),
based on 2500 image-based Monte Carlo trials. A
curve fit to the numerically-develeped probabilities of
detection appears to provide a universal curve that can
be used predictively for ships of differing class, observ-
ed at a variety of aspects and distances. Interestingly,
the curve fit to MRSI/Monte Carlo Py, results coin-

14

cides with a previously published curve fit to data ob-
tained from visual detection experiments performed
with human observers of TV displays (3).

Two ASM system concepts are discussed in Section
15.0, with each concept employing a different means
of target classification, viz., classification performed
on-board the missile by an autonomous target recogni-
tion (ATR) algorithm or off-board by a person inspec-
ting imagery telemetered from the missile. Using MRSI
to cue a slow scan/high sensitivity *classification
mode”, as proposed by W. J. Tmpf (APL), results in
substantial improvements in predicted performance for
both system concepts.

In Section 16.0 we present a new method for sup-
pressing false alarms caused by clcud reflections from
the sea surface.

The image-based simulation itself is coded in FOR-
TRAN and operates on ship images of 64 x 256 pix-
els, at 35 spatial resolutions (App. A). The program
runs both on the APL National advanced Systems
(NAS) mainframe and on an IBM PC AT computer,
and requires about 450K bytes of memory. All simula-
tion results provided in this report (more than 2800
processed images) were developed on an IBM PC AT.
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2.0 ASSUMPTIONS AND DEFINITIONS

§ —_

Vali)
List of objects

B
b N MRS "Jrequiring classitication

é Vi) / Processot

J

@ v Claasifier
Detector urray and
sighal conditioning Targets

Figure 1. Scanning IR sesker concept. Vertical linear
array of | infrared detectors is scanned in azimuth,
generating | digital waveforms which are then input to
the MRS! processor. MRSI's output is a list of objects,
each characterized in terms of its position, dimensions
(az x ol). and brightness.

it is assumed that the MRSI signal processor is at-
tuched to an imaging sensor that periorms surveillance
of a scene once very T, seconds, where the interval
T, is called the sensor’s “frame time” (Fig. 1).

The angular dimensions of a single detector’s field-
of-view, denoted as « (in-scan) ana B (cross-scan) are
collectively referred to as the seeker’s “spatial resolu-
tion” or “instentaneous field-of-view” (IFOV) and are
specified in milliradian (mr) units. The voltage, V,(/),
read out from detector i at sampling time j i
presumably proportional to the integral of the scene
radiance over a rectangular region of angular dimun-
sions o X B

The viewed scene is assumed to be a rectangle of
angular dimensions A % B, mr. The sensor IFOV sub-
divides the total scene into a rectangular grid of
samples, each of angular dimensions a x 8, mr. The
total scene (also called a “frame”) and the sampling
geometry are depicted in Fig. 2. Also shown in Fig.
2 is a rectangular coordinate frame (s,x). Samnles are
obtained on a uniform rectangular grid, with adjacent
samples separated by angle a/u in the s-direction and
by angle 8/v in the x-direction. (8/v is, of course, the
angular separation of adjacent detector elements in
the detector array.) As mentioned 1bove, each sample

15

is considered to be an integral of the scene brightness
over a small rectangular region of angular dimensions
a X f. As shown in Fig. 2, dimensions (4, o, a/u)
are parallel to the s-axis, while dimensions (8, 3, 8/v)
are parallel to the x-axis.

Depending on how the sensor is implemented, the
spatial samples may be gapped, overlapped, or precise-
ly adjaceat. Figure 2 depicts an exsmple for which the
samples are gapped in both the s- and x-directions,
i.e., for which

u,v<l Q)
Samples are precisely adjacent in the s-direction when
u=1 4)

Samples are overlapped in the s-direction when
>l ®)

Analogous to Eqs. 4 and 5, samples are prcisely ad-
jacent and overlapped in the x-direction when v=1
and v>1, respectively.

In general, the ratios of sample size to sample spac-
ing, ¥ and v, are ditferent in value. For example, depen-

=

4
+

J—im
-’,‘—nn_‘% |
|-

»

Figure 2. Total scene is a rectangle of angular dimen-
sions, AxB. Spatial samples are of angular dimensions,
a x 8. Samples are obtained on centers displaced by
angles a/u and Siv. Al angles are measured in millira-
dians (mr)
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ding on the sensor’s impiementation, samples may be
adjacent in s and gappedin x(u=1, v<1) or overlap-
sd in 5 and adjacent in x(u>1, v=1); etc.

In the following discussion, a scanning sensor im-
plementation is assumed, in which the s-coordinate
(Fig. 2) coincides with the direction of scan, and the
x-coordinate is variously referred to as the “cruss-scan”
or “cross-channel” coordinate. Quantity u is conven-
tionally referred to as the in-scan sample factor, hav-
ing units of samples per dwell.

Although the following discussion adopts the
parlance of scanning sensors, the MRSI processor is
readily adapted to staring mosaic sc asors as well.,

Regardiess of the numerical values of the parameters
defined in Fig. 2, the sensor develops every T,
seconds a matrix of numbers, { V() ], in *vhich each
matrix element is proportional to the brightness of the
scene, averaged over a neighborhood of dimensions
a X B, centered on tlie angular cocrdinates (ja/u,
iB/v).

The detector index, i, is also the cross-channel im-
age coordinate, taking on the range of values

1 =i<TI=[Bvf], 6)

where square brackets (-] denote the integer part of
their argurient. Similarly, the discrete time variable,
J, takes on the range of values

1 =jsJ=[Au/ay. 0]

During any given sampling interval (i.e., for a given
value of j), the MRSI processor’s input is a vector ¥,
of dimension 1. Equivalently, the processor operates
upon an input consisting of I digital waveforms.

If the IR seeker were positioned in the far field of
a bar target, the voltage output of each detector chan-
nel would appear approximately as shown in Fig. 3.

For the purposes of this discussion, an object of
angular dimensions:

7, in the direction of scan (“in-scan”)
Y, CIOSS scan,

is said to be ‘“resolved in-scan” when v >, and
“resolved cross-scan” when v > 8. An object is said
to be “fully resolved” when it is resolved both in-scan
and cross-scan,

As discussed in [11], ship targets arc ully resolved
at initial detection, for all cases of p1actical interest.

The “channel signal-to-noise ratio”, SNR,, is
calculated as (cf. Fig. 3b)

SNR; = (V, = V)/V,,. ®)

16
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3 : 1
‘5 7-/0
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Figure 3. Part a): The field-of-view of an IR detector
is scanned across an ideal bar target. T denotes
temperature. Detector and target dimensions, « and y
respectively, are in angle units (mrad). Angular rate of
scan is a constant, 6, mrad/sec.

Part b): Appearance of the voltage waveform obtained
at the detector’s output for the situation depicted in
part a).

i.e.,, as the ratio of peak signal to rout-mean-square
(RMS) noise, at the output of a single detector channel.

A basic measure of seeker sensitivity is its “noise
equivalent temperature”, NEAT, calculated as (cf.
Fig. 3)

NEAT = (T, - T,)/SNR, )

with SNR,. given by Eq. 8.

The sensitivity parameter NEAT may be calculated
using measurements made against calibrated
laboratory targets, using Eqs. 8 and 9. Quantity NEAT
may also be calculated (or predicted prior to sensor
fabrication) as a function of such key seeker optical
characteristics as aperture, 8, o, detector detectivity
(D*), etc. [19].

The number of pixels (spatial resolution elements)
occupied by a rectangular target of size {v, (in-scan)

X v, (cross-scan)} is given by

Npx = 1,7,/ (10)

Equation 9 is presented above from the perspective
of using calibrated bar target data to obtain a measured

B3 1E X2 ‘'S e 3 =

-
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va'ue of NEAT, as a means of characterizing seeker
sensitivity, Once NEAT has been obtained, a variant
of Eq. 9 may then be used to predict the SNR expected
in a tactical scenario, viz.,

SNR, = AT/NEAT 1)

where the quantity AT is now the “apparent” contrast

temperature of the tactical target. Apparent ship con-
trast temperature, AT, is sensitive to a wide variety of
parameters characteristic of the target, the background,
and the atmosphere {20).

Quantities AT and SNR_, are most generally deter-
mined as spatial distributions since they may take on
different values for each pixel in the frame.

17
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3.0 HUMAN VISION AS A MODEL OF PERFECT PROCESSING

At least as regards spatial resolution (e, f), re-
quirements for target recognition are at odds with re-
quirements for lcng range i..quisition. Assuming ade-
quate SNR, high accuracy in target recognition requires
high spatial resolution, regardless of whether the im-
agery is interpreted by a man |3,4] or processed by a
computer [5]. Thus, the objectives of recognition are
furthered by making the number of pixels on target
(N, very large. On the other hand, SR is max-
imized when the resolution element is mstched in size
to the target, i.e., acquisition range is maxiraized when
Npy = 1. . -

The apparent discrepancy in resolution requirements
for IR acquisition and recognition can be resolved via
detection processing modeled after our understanding
of eye/brain processing in human vision [3].

In performing detection of resolved targets in elec-
tronic images, humans are apparently capable of per-
forming adaptive integration over the target’s area -
an astounding feat in light of the fact that *he boun-
daries for area integration must be established prior
to conscious detection.

The remarkable human capacity for subliminal in-
tegration over arbitrarily sized and located target areas
is referred to by Rosell as “the perfect synchronous
integrator model” of human vision, and is attributed
by Rosell to original discovery by Otto Schade, Sr. [4].

The effect of ‘Pcrfect synchronous integration is to
enhance by N, the single channel SNR, SNR,,
given by Eq. 11, A further characteristic of human vi-
sion is that the process of detection cannot be
separated from the process of estimating target angular
dimensions; the two processes are performed in a
coupled and purely paralle! fashion.

Figure 4 depicts a conceptual model of the human
vision system (IIVS) detection process based on a
parallel array of spatial matched filters, in which each
filter in the array corresponds to a possible target
shape. Assuming that the HVS is indeed a perfect syn-
chronous integrator (PSI), every possible target shave
is represented in the parallel filter bank, as well as all

19

Retinal
image | ——

o~ ] = & .o
A
Decision
process /

Figure 4. Conceptual model of the human vision
system (HVS) detection process, based on an infinite-
dimensional array of spatial matched filters.

variants of each shape obtainable by the processes of
translation, rotation, and scaling.

The detection model diagrammed in Fig. 4 is not
directly amenable to simulation or digital realization,
since there are an infinite number of filters in the ar-
ray. We nonetheless feariessly assume that it is possi-
ble to implement with digital hardware an approxima-
tion to synchronous area integration, which leads to
the definition of a detection SNR,

SNR,, = n* SNR. * Njy . (12)

Equivalently, the effect of synchronous area integra-
tion can be expressed in terms of a “processing gain”

G = (SNR,,/SNR.) = a1 Npy, (13)

presented previously as Eq. 1. Quantity 5 in Egs. 12
and 13 is a “processor efficiency” that is included to
allow for the possibility of suboptimal processor per-
formance. In the usage of this report, a PSI is any pro-
cessor, human or machine, characterized by the pro-
perty n = 1. By extension, an imperfect synchronous
integrator (ISI) is a processor for which n < 1.
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4.0 ACQUISITION RANGE CALCULATIONS

It follows from Eqs. 11 and 12 that
AT = n~' - SNR,, + NEAT . N[, . (14)

Assuming somewhat arbitrarily a threshold value for
SNRdet

SNRI, =5, (15)
the value of AT required for detection, RAT
RAT =5 - NEAT/9N}, (16)

is obtained.

Quantity RAT is similar to the Minimum Resolvable
Temperature (MRT) parameter conventionally used to
describe the performance of human observers of ther-
mal image displays. In fact, RAT can be made equal
to MRT if

® SNR], is set equal to 2.8 (rather than 5), cor-
responding to the experimentally determined
value required by human observers to achieve
50% probability of detection,

® 7 is set equal to unity, and

® an additional factor (T./0.2)" is included,
where T, is frame time (typically, 1/30 se-
cond), to account for the smoothing of rapid
temporal variations by the eye’s limited response
time (~0.2 s).

The application of MRT-like descriptors to
automatic target screeners is also proposed in [21].

In the absence of spatial integration processing (i e.,
performing threshold detection directly on the in-
dividual channel outputs), Eq. 16 becomes

RAT = 5 - NEAT . amn

The ratio of Eqgs. 16 and 17 is, of course, Eq. 13.

For fixed sensor IFOV (a and B in Fig. 2), Ny,
decreases with increasing range. Hence, from Eq. 16,
greater apparent contrast is required to detect distant
targets than 1s required to detect closer targets. Ap-
parent contrast required for simple hot spot detection,
given by Eq. 17, is independent of N, and thus is
also independent of target range.

To further evaluate Eq. 16, the number of pixels on
target, Ny, is expressed as

Npx = Ay, /aBR? (18)

21

where

A,,, = ship’s projected area, m?
a, B = sensor pixel dimensions (cf. Fig. 2), mr
R = range from seeker to ship, km.

From Egs. 13 and 18

G = 14,,,/R(af)” . (19)
The apparent contrast required for detection may be
written in terms of Eq. 19 as

RAT = 5 - NEAT/G . (20)

Equations 17, 19, and 20 can be used for calculating
seeker acquisition range against ship targets, as in-
dicated graphically in Fig. 5, for the strawman seeker
and target characteristics provided in Table 1.
Curve A in Fig. § is RAT for a simple hot spot detec-
tion algoritlim, from Eq. 17. Curves B and C are RAT
for synchronous integration processing, from Eq. 20,
for the front- and beam-aspect targets, respectively.
Also shown in Fig. 5§ (curve D) is a representative
ship ‘“signature” (i.e, ship apparent contrast

1 ! 1

o
3
}

1

A (RAT for hot-spot detection)

o
N
=]
|
]

D(Ship “signature”)

B (Front-agspect target)

Contrast temperature (AT, K)
= =]
] =]
L I
|

0.02|-

0.01

5 KM 10 KM
Range to ship

Figura &, Acquisition range calculations for
strawman seeker and target characteristics provided
in Table 1.
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Table 1
Strawman saeker and target parameters
Sceker Assumed
Parameter Meaning Value
o In-scan resolution 0.2 mr
+] Cross-scan resclution 02 mr
) Processor efficiency 1
NEAT Temperature sensitivity 01K
Target Assumed
arameter Meaning Value
A, (90°)  Ship beam-aspect arca 4750 m?
Ashlp 0°) Ship bow-aspect area 1100 m?

22

temperature vs. range) for a particular locale, season,
time of day, probability of weather, sensor height-
above-water, and IR waveband [12].

Intersection points /, and 7, in Fig. S indicate that
synchronous integration processing achieves acquisi-
tion ranges of 7.5 and 10.3 kilometers (km) against
the front- and beam-aspect targets, respectively. Lack
of intersection between curves D and A indicates that
hot spot detection fails to achieve target acquisition,

At this juncture, it should be obvious that syn-
chronous area integration offers considerable perfor-
mance advantage relative to hot spot detection. Less
obvious is how these benefits are to be obtained, since
the only model presented thus far for a synchronous
area integrator (viz., Fig. 4) is unrealizable,

-
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5.0 AN IMPERFECT SYNCHRONOUS INTEGRATOR

In this section we develop the structure of a
realizable signal processor (an “imperfect synchronous
integrator,” or ISI) having performance characteristics
almost as good as the unrealizable PSI depicted in Fig.
4,

We start the ISI design with the structure of Fig.
4, ie,, a processor configured as a parallel bank of
spatial filiers. The PSI is able to accommodate target
profile uncertainties in shape, scale, position, and
orientation. The first step in reducing processor com-
plexity is to note that the rotational degree of freedom
is unneeded in the present application: to sea-skimming
missiles flying wings-level, the major axis of ship
targets will always appear parallel to the horizon.

The next step in reducing processor complexity is
to constrain the spatial filter responses to be rectangles.
Thus, when the original image consists of a single
bright pixel against an otherwise uniform background,
the output image of each filter will be a rectangle of
dimensions k pixels (cross-scan) by n pixels (in-scan).
Consequently, each filter in the filter bank can be label-
ed with its “resolution indices”, £ and n, and general-
ly described in terms of “the (k,n) filter?” The resulting
suboptimal approximation of Fig. 4 is depicted in
Fig. 6.

Finally, the required number of filters in the filter
bank is further limited by constraining the resolution
indices to be powers of 2, between specified minimum
and maximum values based on the likely target angular
dimensions at initial detection. For example, one may
choose

logk = 1,2,3 1)
log,n = 2,3,...6 ,

(k) = (1,3)

o
Original
image =~

—~ %
k=02 (k) ]=04 Knl=@2) wn]=@4
m m m m . e @

//
\?hraaholel' ~ %

decision je——mno—”
process

Figure 8. imperfect synchronous integrator (1S!) ob-
tained from Figure 4 by seiecting spatial fiiter
responses as unrotated rectangles.
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corresponding to a filter bank comprised of 15 spatial
filters. The number of spatial filters may be reduced
still further by culling out filters that correspond to
unlikely target aspect ratios. As indicated in Fig. 7 for
example, there may be very little penalty in removing
filters corresponding to (k,n) = (8,4) and (k,n) =
(2,64); targets having such aspect ratios can still be
detected, although with reduced SNR gain.

The parallel bank of 13 filters corresponding to Fig.
7 may be conceived as havirg a single image as input
and generating 13 blurred/reduced resolution images
as its output. (In the image-based simulations discuss-
ed in Section 14, a processor having 35 spatial filters
was routinely simulated on an IBM PC AT)) It is for-
tunate from the standpoint of data throughput re-
quirements that the sampling rate for each of the 13
reduced resolution images is substantially lower than
for the original full resolution image.

Considering Fig. 6, n = 4 is the lowcst resolution
at which the scene need be observed from the stand-
point of matched filtering for detection. This has sug-
gested the structure of a detection preprocessor
depicted in Fig. 8. Each of the I detector channels is
processed by an identical such preprocessor. The nota-
tion for image data generally is

VitU) (22

where we recall that indices (i,j) refer to position in
the image (cf. Fig. 1) and indices (k,n) denote the
spatial resolution of the image. Thus

Vi'G)

in Fig. 8 is the image data as originally output from
the detector array, at the original (k,n) = (1,1)

Azimuth index, n

4 8 16 32 64
1 1 1 1 1

272x4 2x8 2x18 2 x 32

Elevation
Index, k 491 4x4 4x8 4x10 4x32 4x64

8 8x8 8x16 8 x32 8 x 64

Figure 7. Matrix of spatial resolutions for a spatial
filter array.
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Detactor Boxcar
4-fold data
channel, i integrator
V|"‘ o . decimation

— V'Y

s B 10 Y gt

Figure 8. Detection preprocessor block diagram.

resolution. As shown in Fig. 8, the voltage time
waveform from detector i denoted

44"

(where j is time) is smoothed by a boxcar integrator
and decimated four-fold in time; i.e., only one of each
four samples output from the boxcar imegrator is us-
ed in subscquent signal processing stages. The effect
of the detection preprocessing step is to provide an im-
mediate two-fold improvement in SNR and an im-
mediate four-fold reduction in subsequent data
throughput requirements.

Of course, 21e two-fold SNR improvement is only
experienced for targets at least four samples in in-scan
extent; smaller targets will have less SNR improvement,
with a single-sample target actually experiencing a two-
fold degradation in SNR. This drawback is more ap-
parent than real for the following two reasons.

@ Subsequent to detection, it is necessary to
transfer processing to a classification step.
Targets occupying <4 samples in-scan are too
small to permit image-based classification.

© Sizeis a key indicator of ship target value. Smalil
ships are generally of less interest as targets than
are large ships.

The input/output relationship for the Fig. 8 pre-
processor may be expressed as
3
Vi) = % B Vi G-h L @
J=12,... l[Au/da] .

The maximum value of j in Eq. 23

Jmax = [Au/4a} (24)
is only one-fourth as large as j
four-fold decimation step.
Writing

in Eq. 7 due to the

max

A = 6T, 25

where

24

A = total in-scan field-of-view, mr
© = angular rate-of-scan mr/s
T, = frame time, s

and recognizing that the sample rate per channel, f,
(Hz), is given by
S = Jma’ T (26)

'l max

from Eqgs. (24)-(26), it can be found that
f, = Ou/da @n

The factor 4 in the denominator of Eq. 27 is due to
the decimation step in Fig. 8.

The factor (1/4) preceding ihe sum in Eq. 23 is a
normalization that may not be required in 2 hardware
realization of the processor.

The general structure of the complete ISI, which is
called a Multi-Resolution Spatial Integrator (MRSI),
is shown in Fig. 9. The elements of MRSI are:

@ the detection preprocessor (Fig. 8),

@ cross-channel averaging (XAV, Section 6),

Detector Detection Filter band
array  preprocessor [ == —— == —= ———— — 1
| A v |
(——[ i
EH—zH—H oo v, | |
: v, Vv, *0); |average =>average :
L l I
|
(H— ol | I
T “
————|—-——
K] | [ }
| y
\V4 ! Y |
NE Noise | Background} |
estimator i estimator | |
BES| 1 {
| |
! |
%n l l
| |
b |
Threshold/
TD | decision <=

Detactions

Figure 8. MRSI signal processor block diagram.
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@ in-scan averaging (IAV, Section 7),

® background estimation aud subtraction (BES,
Section 9), and

® noise estimation and threshold/decision (NE
and T/D, Section 10).

Each capitalized acronym (XAYV, 1AV, etc.) is the name
of the subroutine that implements the corresponding
processor function in the FORTRAN simulation
(App. A).

The action of the detection preprocessor has already
been discussed in connection with Eq. 23 and Fig. 8.
The other processing blocks in Fig. 9 will be discuss-
ed in subsequent sectiors of this report.

Although the detector array depicted in Fig. 9 is
comprised of square non-staggered elements with a
small cross-channel gap, the MRSI processor is readily
applied to arrays having all possible combinations of
the following attributes: arbitrary values of v; stag-
ger offset between adjacent detector channels; and
time-delay-and-integration,

The means for implementing detection preprocess-
ing as in Fig. 8 is an array of 1 identical processing
modules operating simultaneously and uncoupled; i.c.,

25

in a purely parallel fashion. A means for irnplemen-
ting an array of spatial filters at varying spatial resolu-
tions is described in Sections 6 through 8. Like the
preprocessor, Fig. 8, the multi-resolution processor
comprises a large number of simple and identical pro-
cessing elements operating in parellel. The spatial filter
algorithm is separable in in-scan and cross-scan opera-
tions, with the cross-scan operations oeing perform-
ed first. Thus, we operate on the detection preprocessor
outputs, viz.,

Vitl)

with a “cross-channel averaging processor”, XAV, to
obtain

VEGY , k= 2,48

which are then provided as input to an “in-scan averag-
ing processor”, 1AV, to ob ain the complete set of
reduced resolution images,

VEG) , ko= 24,8
n = 4,8,16,32,64
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6.0 CROSS-CHANNEL AVERAGING PROCESSOR (XAYV)

21e structure of the cross-channel averaging pro-
cessor, XAV, is shown in Fig. 10. Although three stages
of cross-channel processing are required to obtain the
three levels of cross-channel resolution indicated in Fig.
1 {k = 2, 4, and 8), for simplicity of illustration, only
two of the stages are depicted. Again for simplicity,
in Fig. 10, the four quantities 4, B, C, and D are defin-
ed as follows:

Vit (28)
= V')
='W
2 0)

DO wa

Theough the firs. stage of cross-channel averaging, we
obtain

V() = (A+B)/2 = BIVI* (D + Vi U)] (29)

V3 U) = (B+C)/2 = BV + V' ()]
V) = (C+D)/72 = BIVY* )+ V)]

il

Generalizing the relationship we see developing in Eq.
29,

2
vi‘ly =» B Vi L0, (30)

i=1,2,... (I-1)

descriptive of the action of the first XAV stage.
Following the XAV second stage logic in Fig. 10 we
obtain,
4

V‘I"U) = (A+B+C+D)/4 = W r§| V:.d(j) '
i=1,2,... (I-3)

which generalizes to
4

ity = v B ViL.0) . @n

r=1\

i=12,... (I-3)
The output of the XAV third stage (not shown in
Fig. 10) is found to be
8
Vi‘dG) =178 B Vi () 32)

i=12,.. (7.

Inspection of F.gs 2C through 32 indicates the
general input/output descriptio. of XAV can be writ-
ten as

&
Vit =17k L V), (33)

Stage 3
{Not shown)

vl1.40)

v21.40)

V;"‘(l)

v‘1.40)

(k.n)= (14) 2.4)

(44) 64

Figure 10. Cross-channel averaging processor, XAV. Inputs to XAV, denoted Vi 114(j), are provided by detection
preprocessor (Figure 8). Outputs of XAV, denoted by unterminated arrows pointing downward, are provided to

IAV for further processing.




THE JOHNS HOUKINS UNIVERSITY
APPLIED PHYSICS LARORATORY
LAUREL, MARYLAND

Cross-channel averaging successively reduces the
number of elevation channels (and hence the max-
imum value of i) at progressively higher resolutions

I(k) = max(i) = I-kk+1 , (34)

where the number of elevation channels at the original
resolution, /, is given by Eq. 6.

It follows from Eq. 33 that cross-channel process-
ing is instantaneous, i, determination of ¥** at
time j depends only on values of ¥:*, also at s.mpl-
ing time j.

28

The position of XAV within the overall processing
structure is indicated in Fig. 9.
Equivalent to Eq. 33a, we can write

VRG) = KIVEY) + VELD) L (33b)
k=124
i=1,2,... (I-2k+1) .

The FORTRAN routine XAV (App. A) implements
Eq. 33b.
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7.0 IN-SCAN AVERAGING PROCESSOR (IAV)

The in-scan averaging processor, (IAV), is comprised
of a large number of identical processing *“‘sections”,
cach structured as shown in Fig. 11. Since a separate
1AV section is required for sach distinct pair of values
(i k), the totai number of required sections (each iden-
tical to Fig. 11) may be computed as

Nyy = L

k=248 l(k)
With I'(k) given Ly Eq. 34,

N, = L , U=k+1) =3-11. (39)

kn2 4
For example, if the scanning seeker has
I= 128 (36)
detector channels, from Eq. 35, it is found that
N, =313 3n
1AV sections, each identical to Fig. 11, will be required.
More generally, the number of required 1AV sections
may be simply estimated as 7 times the number of ze-
qQuired cross-scan averaging stages.

The action of IAV is developed with reference to Fig.
11 as

V') — trom XAV

V."‘B(J)

VINJGU) v'k,nu)

Figure 11. Transversal filter realization of one section
of the in-scan averaging processor, IAV. inputs to 1AV
are provided by the cross-scan averager (XAV). A large
number of such sections, operating simultaneously
and uncoupled, comprise the complete IAV, Output of
|AV Is an array of reduced resolution images. Frocess-
ing elements denoted as z-1 are unit delays. Final 8
delay elements and final summing node are not shown.
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2

VitG) = v B VMG-s+h 08)
4

Vi) = % L vG-s+1)
R

VERG) = 1/8 L Vitu-s+1)

which generalizes readily as

"D
Vi) = 1/n, B VI'G=s+1) . (39)
n, = 2,4,8,16
J=n, (n,+1}, (n,+2),...

If the maximum and minimum values of in-scan
resolution index are denoted, respectively, as n_,, and
n,.., the number of delay elements in each IAV sec-
tion (Fig. 11) is given by

Nyetays = M/ i) =1 . (40)
For the example of Eq. 21

N,

s = (6474)=1 =15, @n

delay elements per 1AV section are obtained. For this
example, 1AV provides outputs corresponding to the
following five in-scan resolutions

n = 4,8,16,32,64 . 42)

The number of required delay elements can become
quite large for 1AV sections structured as per Fig. 11.
For example, if instead of Eq. 42

n = 1,2,4,8,16,32,64,128, 43)

the number of delay elements per 1AV section increases
from 15 to 127 in spite of the fact that the number
of in-scan resolutions has only been increased from
5to8.

Depicted in Fig. 12 is an alternative structure for
the 1AV sections, modified from Fig. 11 to reduce the
required number of delay elements. The processing ele-
ment labeled “A” in Fig. 12 is structured like the
original 1AV section, Fig. 11. Each of the boxes label-
ed “B” in Fig. 12 is an infinite-impulse-response (IIR)
approximation to Eq. 39 for the appropriate value of
n_.
oParticularly simple IIR structures, shown in Figs.
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A
V‘k“
A
P t——. v k a
Tranaversal tilter | k4
IAV Section Vi
(Fig. 11) ety K8
——r k18
8
Hy,(2) - Vi"-”
B
H“(l) ——t vik.u
8
Hygg®) e v 1128

Figure 12. AV section, modified to minimize the
number of required delay elements.

oxp(-1/n)

— 10 vng)

Figure 13. Suboptimal approximation ot Hp(2) requir-
ing just one memory/delay element.

13 and 14, require just one sample delay per filter func-
tion, H (2). Following this approach, the IAV section
corresponding to the eight in-scan resolutions given
by Eq. 43 can be implemented with just 18 delay
clements rather than 127 elements, as would be re-
quired by the original approach (Fig. 11) alone.

Of course, the reduced number of processing
elements achieved via IIR processing (Fig. 13) relative
to finite-impluse response (FIR) processing (Fig. 11)
is at the expense of reduced SNR. A relevant discus-
sion of this point is provided in [22]. The SNR penal-

<

+

C{ +
3

V;"'"(l)

/

Figure 14. Apprcximate realization of Hp(2), Figure
13. Since n is a power of 2, both tixed gain ampiitiers
are realizabie as bit shifts.

V() — trom XAV
V‘kﬂ
A
ey V02
Transversal filter Vi
IAV section  f——e VK4
(Fig. 11) Ve
-8
Detaction
preprocessor
(Fig. 8)
v|l.\ﬁu)
vlkJB
A
L k32
Transversal filter i
1AV section

e V128

{Fig. 11)

Figure 15. Alternative |AV structure,

ty involved in developing IIR approximations to Eq.
39 depends on the order of the 1R filter; procedures
for designing 1IR structures subject to design criteria
appropnate to the present application are given in (23,
Chap. 8] and [24).

Yet another approach to designing IAV sections to

‘R R =R )

S & = am

(e =




-

THE JOHNS HOPKING UNIVEMITY
APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

minimize the number of processing elements is shown
in Fig. 15. The components labeled “A” in Fig. 15 are
structured as per Fig. 11; the component labeled “B”
in Fig. 15 is structured like the detection preprocessor
(Fig. 8/Eq. 23), but modified for 16-fold resolution
reduction and decimation-in-time.

The development of a multi-resolution spatial filter
array via the structure of Figs. 10 through 15 is an
original contribution of the work described in this
report. Some virtues of this approach are that

3

@ The image data are processed sequentially by col-
umn; since scanned lineur arrays acquire imagery
sequentially by column, the processing approach
described eliminates the need to buffer large
amounts of data; and

@ The total processor comprises a large number
of simple, identical, modules, operating in
perallel, and thus appears inherently well-suited
to real-time applications.
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8.0 THE PARALLEL BANK OF SPATIAL FILTERS

The multi-resolution filter bank is realized by con-
catenating XAV and 1AV, as shown in Fig. 9. A single
input/output relationship for these two combined
filters is obtained by substituting Eq. 33 into Eq. 39,
with the result

h &

V:'""U) = (1/kn,) s}_:“l ’}:," yhs

] i4r-

JU=s5+1) (44)

which may be written in a compressed notation as

W% = Y@ rect(kon,) (45)

where

V' = (¥}*()),; = image at output of detection
preprocessoi, Fig. 8

Vi = IV,-"‘""(J') ], = reduced resolution image
with indices (k, 4n )

rect(k, n,) = 2-D rectangle function, of dimen-
sions k xn, and amplitude

(17kn,).
() input image, (c) A reduced resolution
(18xa2vectangle Image at cutput of 1AV
(ki) = (L1 (k) = (1,52)

A ) v, 3%

() Same data as (e) above

The meaning of Eqs. 44 and 45 is explained with
the aid of Fig. 16. As shown in the figure, the effect
of image convolution with a rectangular smoothing

1 (=neh
1 4 1
T v

!

}
14— ——t
| b—— -~ |
T v - 7='V."“0i

Reduced
+_.< Z resolution image
(i+k=~=1) L (output image)
Fine resolution image Ro—x ) ]
(input image)

Figure 18. Convolution with a rectangular kermnel may
be interpreted as a mapping from a tine resolution im-
age (Figure left) to a reduced resolution image (Figure
right). The (1.j) — pixel value in the reduced reaolution
image is obrained aa the average of the pixel values
within a rectangular region (shsded box) of dimenaions
k x n, whose upper-right-comer is located at the (1))
— pixel location in ihe input image. As shown in the
Figure, resolution eduction produces some image
shrinking.

{e) A reduced resolution (g) Reduced resolution image,
image at output of XAV convclution kernel matched
(k) = (18,0) to target dimensions

(k) = (1632

(h) Same data as (g) above

AL v,'03%;)

Figure 17. Rectangle test image, at original resolution, (a) — (b), and at 3 reduced resolutions, (c) — (h). Data

are prior to background subtraction.
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function is to perform a mapping from a fine resolu-
tion image to a reduced resolution/smoothed image,
in which the (i,j)-pixel value in the reduced resolu-
tion image is obtained as the average of the pixel values
within a rectangular region of dimensions kxn,,
whose upper-right-hand corner is located at the (i,/)-
pixel location in the input image.

The XAV/1AV spatial filter array was implemented
as a FORTRAN program and exercised against several
simple test targets to confirm correct operation. Figure
17 depicts the results of one such simulation, show-
ing the appearance of a 1632 rectanguiar test image
at three reduced resolutions. Detailed numerical
evaluations of similar output images for bar and point
targets (for which the convolution products in Eq. 45
are exactly calculable) were used to verify correct func-
tioning of the FORTRAN simulation.

To illustrate the SNR-enhancing effect of spatial
filtering, white gaussian noise was added to the rec-
tangle test image to reduce the input image SNR (target
contrast/ RMS noise) to unity, i.e,

SNR. =1 .

The result is shown as the upper-left image in Fig. 18.
Numerical analysis of the images output from IAV in-
dicatcs that SNR is enhanced predictably as a func-
tion of spatial resolution. In particular, the (16,32)-

34

filter output, shown bottom-left in Fig. 18, is found
to have SNR very nearly equal to (16x32)% =
16y/2. Also shown for illustrative purposes in Fig. 18
is the effect of applying spatial filtering to a frigate
silhouette.

vk.n

16x32 Rectangle Frigate silhouette

(k'n) i (1'1) - _
RN ] Qi

(16,32)

Figure 18. Multiresolution processing enhances
SNR. Four images (left) are for rectangle input image;
four images (right) are for frigate silhouette. Images
at original resolution, having SNR = 1, are in the top
row (rectangle is top-left; frigate is top-right).
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9.0 BACKGROUND ESTIMATION AND SUBTRACTION (BES)

The need for background estimation and subtrac-
tior: (BES) is explained with the aid of Fig. 19. The
detection problem is conceptualized as being one-
dimensional in Fig. 19 to simplify the discussion.

Figure 19 depicts a target of size v, pixels observ-
ed against three types of backgrounds, viz., a cons-
tant background of unknown intensity (part a); a
background of constant but unknown intensity gra-
dient (part b); and a “slowly varying” background
(part c). Successful detection requires that the pro-
cessor establish an intensity threshold, T'(j), that rides
above the unknown and possibly varying background,
B(j), by a fixed intensity offset, .

Figure 20 depicts a conceptual means for
establishing the threshold and accomplishing detec-
tion as per the examples in Fig. 19. Estimating under

a) 4 Oﬁ{et T(j), Detection threshold
Intensity, |~ T — " I_l_
vl 1 1
a B(j), Background
[
— }, Azimuth angle
|4.1,->| (pixels)
b)
\{0)]
c)
_i‘ e T0)
7’
Vo) ,TW
]

Figure 19. Examples of 1-D detection problems il-
lustrating the need for BES. Part a), target ot dimen-
sion yg (pixels) in constant background. Level ‘&' is
unknown, Part b), tarnet embedded in constant slope
background. Background parameters ‘a’ and ‘b’ are
unknown. Part c), target observed against slowly vary-
ing background.
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the null target hypothesis what the background would
have been at each position j, B(j), appears to be an
essential element in developing a threshold T(j) for
targe! detection against spatially varying backgrounds.
Equivalent to Fig. 20, the detection process can be
conceived as being accomplished in two stages, viz.,
background estimation and subtraction (BES)

Cy) = vU)-8\) , (46)
followed by threshold detection
cy) 20 @7)

A process analogous to Eq. 46 is separately applied
to all waveforms, ie.,

Cf'"(j) = th(-” _ él;n(',) s (48)

as shown in Fig. 9.
A number of candidate filters for developing the
background estimate, B, is discussed next.
Assuming that the direction of scan is parallel to
the horizon, the background estimate may be
developed as

BA(j) = VA (—nu) . (49)
In the event that the background level is found to

contain appreciable variation over in-scan angles = na,
an alternative background estimator is

Oftset, @

Background
estimate 1.+

Detected
intonity —p—= | A E U —e((T)

T
Threshold, T{))

No
No  deiection

&>

Yes

Detection

Figure 20. Conceptual signal processor for im-
plementing threshold detection as per Figure 19
examples,
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(50)
BEG)y = [V~ Snu/4) + VE"R(j+ Snu/a) /2.
The inage areas (“windows’) used by the
background estimators, Eqs. 49 and 50, are depicted
in Fig. 21. The “window gaps” in Fig. 21b, separating
the background windows from the target window, are
intended to prevent target self-thresholding (with a con-
sequently degraded SNR) when the target’s in-scan ex-
tent, v,, over-spills the target window; i.e., when

na < vy, S 2na . (51)
The variance of a random process X (1) is denoted as

Var (X) = E [[X-E(X)]*] , (52)
where E{-} indicates expectation over sensor noise
statistics.

For spatially uniform backgrounds, specifically ex-
cluding the possibility of a target in the scene, we define

al, = Var[V'"()] , (53)

where the presumed lack of dependence of ozk',, on i
is discussed below. R

Since V*"(j) is statistically independent of B*"(j)
for all background estimators of interest, it follows
from Eqs. 48 and 53 that

Origin of coordinates

a) M — '
Il

|

ving-nu)  Jvkng) qargetn] K
f—n——
=

b)

| | |
- 5n/4 - 5ni4 >
| " | " !

vkﬂlzu snud) V) argetn| VN2 4 Snuie) K

e i Bl e

Figure 21. Image aress used by two background
estimators. Part a) corresponds to Eq. (49); part b) cor-
respcnds to Eq. (50). Cross-channel (x) dimensions are
in channel units; in-scan (8) dimensions are in dwells.
Scan direction (s) s parallel to the horizon.

36

Var(C"(j)] = o}, + Var[B"()1 . (54)

It follows from Eqs. 49 and 50 that, for both of these
background estimators,

Var[B/"(j)] = o%, . (55)
Thus, from Egs. 54 and 55,

Var(C"()] = 26%, , (56)
i.e., for both background estimators considered thus
far, the differencing process used to develop estimated
contrast degrades two-fold the variance of the
waveforms. -

A relatively less noisy contrast can be developed by
using a larger background window; e.g.,

éik"(j) - Vf.Zn (j—3nu/2) , (57)

depicted in Fig. 22. It follows from Eq. 57 that

VarB(j)} = o%,/2 . (58)
and ‘rom Eqs. 58 and 54 that

Var[C!"(j)] = 1.54%, . (59)
Comparing Eqgs. 56 and 59, we see that the background
estimate provided by Eq. 57 resuits in a lower-noise
contrast estimdte.

The use of larger background windows (e.g., Fig.
22) provides improved acquisition performance against
unstructured backgrounds at the expense of reduced
performance against structured (‘‘cluttered’)
backgrounds. The trade-offs involved in selecting the
MRSI background estimator window dimensions are
in many respects analogous to those encountered in
designing signal processors for detecting spatially
urresolved targets, commonly known as infrared
search and track (IRST) devices [25].

l*—— 3nl2——~|

{

Y v s | e i

{ 2n l* n ! ’
Figure 22. Image area used by low-nolse background

estimator, Eq. (57). Scan direction (8) is parallel to the
horizon.
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Developing the background estimate for parallel-
to-horizon scanning via Eq. 49, 50, or 57 imposes an
additional memory requirement beyond that already
required by 1AV,

Assuming that the direction of scan is perpendicular
to the horizon, the background estimator analogous
to Eq. 49 is

BG4y = Vi ) . (60)

Image areas relevant to Eq. 60 are depicted in Fig. 23.
Analogous to Eqs. 50 and 57, one now has for cross-
horizon scanning

B"(jy = (VA G) + VR .D172, (6)
and

BI"() = VL U) . (62)

Developing background estimates for cross-horizon
scanning via Eq. 60, 61, or 62 imposes no additional
memory requirement beyond that already required by
1AV.

It should be noted that the need for implementing
background suppression processing, and the likely ac-
curacy of any particular background estimator, is en-
tirely dependent on the spatial structure of the ocean’s
thermal emission. The .ea radiance is generally a func-
tion of niany variables, including wind speed, sea
height, nadir angle of the viewing line-of-sight, viewer’s
height above water, cloud cover, sunglints, and sur-
face slicks [26).

In the processor simulation (App. A), the
background estimator described by Eq. 50 and Fig.
21b, performing lin-ar trend removal from the
background, was chosen. Linear (or nearly-linear)
trends may be caused by instrumental effects as well
as by true thermal gradients in the scene.

Figure 24 provides an example of a measured ther-
mal image in which the sea background appears to
display a nearly linear trend with azimuth. It cannot
be said with certainty whether the trend observed in
this data is due to an instrumental effect or scene ther-
mal variation. Also, the magnitude of the apparent
change in background level from one end of the scan
to the other is, in this case, still much smaller than
the ship’s contrast (cf. Fig. 32, top).

k¥

Continuing the example that led to Fig. 17, Fig. 25
depicts a rectangular test target as seen at four resolu-
tions, after background subtraction. The images in Fig.
25, like those in Fig. 17, are noise free.

Origin of coordinates

X - i+k i

n [ v :lﬁl.""‘(l) (tarae@! o

|

4———k——-—| s

Figure 23. Image area used by background estimator,
Eq. (60), for scan direction {s) perpendicular to the
horizon.

Scan line through .
background is itted’ > 1/‘[.\

Intensity

MM!W\“\A/‘\

W,
N

100 200
Pixel

Figure 24. Measured thermal image of a ship observ-
ed against a sea background, in which a scan line
through the background shows a neariy linear trend.
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(@ o) ={1) © (k) =032 ® (k) = (16,%) g)  (kn) = (16,32)

(b) Same as (a), above (d) Same a3 (c), above (f) Same as (e) &bove ) Same aa (g), above

c|1.1 ) cl1.320) C|13,1 ) c'10.320)

Figure 25. Continuation of example from Figure 17, depicting rectangular test target at 4 resolutions, after
background subtraction.
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10.0 THRESHOLD/DECISION (TD) AND NOISE ESTIMATION (NE)

Threshold/decision processing (TD) currently im-
plemented in the simulation software (App. A) is based
on performing a forced-choice detection in each frame,
Thus, rather than perform the threshold comparison
indicated in Eq. 47, our TD processor takes the form
shown in Fig. 26. Each contrast image

(")),

is normalized with respect to a noise standard devia-
tion, g, , to obtain a “signal-to-noise image”. The en-
tire set of normalized contrast images is then examin-
ed for a global maximum to provide the forced-choice
detection. No image storage is required to implement
TD, since the search for the “brightest pixel” is per-
formed one column at a time. As a practical matter

max [C{"())] = max W()) , (63)
iJ.k.n J

is calculated, where
W(j) = max (C"()] (64

The “high data rate” part of the search process is con-
tained in Eq. 64. For the set of 13 spatial resolutions
given by the example of Fig. 6, and assuming that the
seeker has 1 =128 detector channels (as per Eq. 36),
it can be shown that Eq. 64 implies that, at every fourth
sampling instant, TD must find the largest of N,
values, where

N, = 4I(2) + 5I(4) + 41(8) ,
with I(k) given by Eq. 34. Thus, implementation of

Eq. 64 requires that on every fourth sampling instant,
TD find the maximum of 1617 data values.

Noise estimator

Parameters describing

oxn Foxetd.;?:r:cﬁ detected object
c‘k,n(” G on Poslﬁon. “0"0)
max [C,*"(Noy ] Size, (kg,ny)
k),k,n Area-average contrast, C,
Figure 28. Threshold/decisior: {TD) logic for forced-

choice detection.
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TD can be modified simply to accommodate multi-
ple target detections within a large field-of-view by im-
plementing Eq. 63 as a search for local maxima in
W (j) - so long as the various targets are spatially well-
separated in azimuth.

The action of the noise estimation (NE) component
of Figs. 9 and 26 is discussed next. The purpose of
NE is to establish estimates for the noise variances
o, defined in Eq. 53.

The root-mean-square (RMS) noise levels of the in-
dividual cross-scan channels are denoted as

g, i=12,..,1,

t

where g, is the RMS value of ar. additive noise com-
ponent of waveform V, (j), o, corresponds similarly
to V,(J), etc. Assuming that the noise level is about
the same for each channel

yi=1,2,0.,0, (65)

and that the additive noise is signai-independent,

20/3V,= 0, (66)

the RMS noise of waveform V;"(j) at the output of
1AV is given by
g, = 0,/(kn)" . (67)
If the different cross-scan channels have appreciably
different noise levels, invalidating Eq. 65, it may then
be desirable to include a noise calibration mode in the
signal processor. This entails illuminating the focal
plane uniformly (e.g., by staring into the radiant source
used also for dc-restoration), and then using the sample
variance of ¥/"(j) as an estimate for o’ (i). The
RMS noise, a,,, in Eq. 67 is then replaced by o, (i).
The possibility of implementing a noise calibration
mode (as an aiternative to implementing a “hardwired”
calibration, Eq. 67), is indicated in Fig. 9 as a dashed
connection between 1AV and NE. Our software simula-
tion (App. A) does not in fact use Eq. 67. At some
expense in execution time, the simulation prior to each
forced-chioice detection executes a calibration run
against a noise-only frame, calculating values of Oim
as sample variances, rather than by using the closed
for_m expression, Eq. 67, that is valid only for white
noise.
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11.0 PROCESSOR SIGNAL-TO-NOISE MODEL

In this section, we complete the simple processor
signal-to-noise model (cf. Eqgs. 1, 13, and 19)

MW (70)
145 /R(af)” ,

ship

G =

by showing that the choice in Section 5.0 of rectangular
ruspoitse functions provides a simple geometrical basis
on which to calculate the “processor efficiency”, ».

The geometry of the calculation is depicted in Fig.
27, in terms of two locally defined quantities, A and
B, defined as follows:

A = number of target pixels within a rectangular
region of integration

number of background/non-target pixels
within the rectangular region of
integration.

B

The contributions of quantities 4 and B relevant
to calculating PSI and ISI SNR performance are given
in Table 2. For example, the increase in RMS noise is
always equal to the square root of the number of pix-
els within the area of integration, which for PSI (i.e.,
perfect) processing is simply the ship’s area (defined
in Eq. 70 as Np,), and which for ISI (i.e., imperfect)
processing is the area of the rectangular response
function,

kn = (A+B) .

The third column in Table 2, SNR gain (G), is ob-
tained simply as the ratio of the entries in the first and
second columns.

The processor efficiency, », is calculated by ratio-
ing the third column entries from Table 2,

Filter
response
function

Ship profile

Figure 27. Geometry for caiculating processor effi-
clency, u, entering into Eq. (70).

4]

Table 2
Contribution of quantities A and B, from Fig. 27, relevant
to calculating PS! and IS| SNR performance

Signal RMS
Enhance- Noise SNR
Processor ment  Increase Gain (G)

Perfect Synchronous N, Ny No,
Integrator (PSI) .
Imperfect Synchronous A (kn)"2
Integrator (ISI)

A/(kn)

n = GUSI)/G(PSI) = A/(kn + Np,)% .(T1)

Equation 71 is the desired expression for processor
efficiency, n, which, taken together with Eq. 70, com-
prises what we call the processor SNR model.

We illustrate the application of Table 2 and Eq. 71
with an example, in which it is assumed that the target
dimensions are one pixel in elevation and m pixels in
azimuth and that each of the m target pixels has the
same brightness. Also, we uniquely define an integer,
n,, in terms of m, as

n,<m<2n,, (72)
where n_ is an integer power of 2. It follows from Eq.
72 that the MRSI processor will estimate the target’s
length as being either n, or 2n, pixels, depending on
which of the (k,n) = (1,n,) or (k,n) = (1,2n,)
filter output amplitudes is largest. The entries in Table
3 are calculated from the second row of Table 2 (ISI),
by setting k=1 and A=n, (When n=n)) or A=m
(when n=2n_). The processor gain, G, is obtained
from Table 3 as

G(m,) = max G(n) = max[n";, m/(2n,)*),(73)
n n
where i1, is an initial processor-derived estimate for
target size.
It follows also from Table 2 (first row, last column)
that
G(PSI) = m* . (79

Taking the ratio of Eqs. 73 and 74, we obtain the pro-
cessor efficiency

"
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Tabie 3
Quantities relevant to calculating MRSI processor SNR
gain (G) and efficiency (y) for the example discussed
in connection with Eq. 72. Quantity A is defined as in
Fig. 27.

n A G(n)=A/n" 2(n)=A/(nm)"
n, n, n} (n,/m)*
2n, m m/(2n)* (m/2n,)"

7 = 9(m,) = G(m,)/m"» (75)

where the quantities n(n) are given in Table 3,
This example, Eqs. 72 through 75, is developed
numerically in Teble 4 for target dimensions

1 €< ms 32,
SO T | T
- = _
@ 3.0}— —
£
©
o
s
¢
@ 20— —
1.0 —
mym, m, m,
d 1l Ll \
1 5 10 15 20

m
Target Size

Figure 28. SNR gain from Tabie 4. Solid curve, G(PSI)
= m"; dotted vailues, G(ISl) from Table 4. Values of
breakpoints m_given by Eq. 76.
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some results of which are plotted in Figs. 28 and 29.

The SNR gain, Fig. 28, has a step-stair variation
with target size, intervals of constant gain alternating
with intervals of constant slope. The breakpoints in
Fig. 28 may be calculated by setting equal the quan-
tities G(n,) and G(2n,) from Table 3

n = m/(2n)" |
m-m,
Thus, the Fig. 28 breakpoints occur at non-integer
values of m, denoted by m,, and given by

n, = 1,2,4,8,16,...

m =% r=1234,.. . (76)
Using vertical bar targets in Gaussian noise, we have
validated Eq. 73 using the MRSI simulation provid-
ed in App. A. In performing this simulation, we used
an input SNR of unity, SNR. = 1, and an elevation
field-of-view of =64 pixels. Estimating the SNR gain,
G, as tlie average value of 64 values obtained for the
array of 64 elevation channels, the results appear ex-
actly as shown in Fig. 28; i.e., the gain values obtain-
ed from Eq. 73 and those obtained via simulation are
indistinguishable on the scale of Fig. 28.

o0

! Y T T

0.95— _
IS
>
8 0.90— —
S
&

0.85p— —t

0.0l | ! !

1 5 10 15 20

m
Target Size

Figure 28. SNR efficiency, from Table 4. Theoretical-

ly perfect performance corresponds to n = 1.
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Table 4

Calculation ot MRSI processor gain (G) and efficiency (y) as a function of
target size (m) for the example discussed in connection with £gs. 72 through
75

ry

m n, 2n, max{n}, m/(2n)*} = G(ISI) n=G/m" m,
1 1 2 1.00 0.7 1.00 1.00 1
2 2 4 1.41 1.00 1.41 1.00 2
3 2 4 1.41 1.50 1.50 0.87 4
4 4 8 2.00 1.41 2.00 1.00 4
5 4 8 2.00 1.77 2.00 0.88 4
6 4 8 2.00 2.12 212 0.87 8
7 4 8 2,00 2.47 247 0.94 8
8 8 16 2.83 2.00 2.83 1.00 8
9 8 16 2.83 2.25 2.83 0.94 8
100 8 16 2.83 2.50 2.83 0.89 8
| 8 16 2.83 2.75 2.83 0.85 8
12 8 16 2.83 3.00 3.00 0.87 16
13 8 16 2.83 3.25 3.25 0.90 16
14 8 16 2.83 3.50 3.50 0.94 16
15 8 16 2.83 3.75 3.75 0.97 16
16 16 32 4,00 2.83 4.00 1.00 16
17 16 32 4.00 3.01 4.00 0.97 16
18 16 32 4.00 3.18 4.00 0.94 16
19 16 32 4.00 3.36 4.00 0.92 16

20 16 32 4.00 3.54 4.00 0.89 16

21 1, 32 4.00 37 4.00 0.87 16

22 16 32 4.00 3.89 4.00 0.85 16

23 16 32 4.00 4.07 4.07 0.85 32

24 16 32 4.00 4.24 4.24 0.87 32

25 16 32 4.00 4.42 4.42 0.88 32

26 16 32 4.00 4.50 4.50 0.90 32

27 16 32 4.00 4.7 4.77 0.92 32

28 16 32 4.00 4.95 4.95 0.94 32

29 16 32 4.00 5.13 5.13 0.95 32

30 16 32 4.00 5.30 5.30 0.97 32
31 16 32 4.00 5.48 5.48 0.98 32

32 32 64 5.66 4.00 5.66 1.00 32
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12.0 TARGET SIZE ESTIMATION

Our main objective in developing MRSI was to find
a means for SNR enhancement, and, at least for the
example of Section 11.0, it appears that this has been
achieved. Inspection of Figs. 28 and 29 shows that the
SNR gain achieved by MRSI is quite close to that
achieved by the theoretically optimum perfect syn-
chronous integrator (PSI).

A second objective was to have MRSI develop an
estimate for target size, and in this interest, the cur-
rent algorithm clearly needs improvement. Inspection
of Figs. 30 and 31 shows that the target size estimates
devcloped by MKSI can easily be 30% in error for the
previously discussed example. However, as discussed
in this section, it appears straightforward to develop
simple variants of the original algorithm that are
capable of providing greatly improved estimates for
target size. For example, we propose the following
refined target size estimator, appropriate for the
preceding one-dimensional example:

m = Int () , (77)
20 T ) T
/
7/
164 o o o o 00 0
€ //
8 /7
®
/s
2 ol 4 -
- 7/
€
% 8 (I -/o * e <
w /
//
5k -
4 . o/. -
,/
s ]
Ve | . ]
1 5 10 15 20

m
Target Size

Figure 30. Initial estimate of target size, m,, from
Table 4. Dashed line, m = m, denotes theoretically
ideal performance, as achieved by the refined target
size estimator, Equations (77)-(79), in the limit of high
SNR.

4s

where
log, m = W log, m, + (1—-W) log, m, ,(78)
and
W= -071 + 1.21 [G(ﬁl,)/G(rf!z)] . (719)
Quantity m, in Eqs. 78 and 79 was previously
defined by Eq. 73. Similarly, quantity i, is defined
implicitly by

G(m,) = min G(n) = min [n",, m/(2n"})] (80)

o T T T
- -~
m — —
£ 1wf ~
£
=
€
lv—
<€
g o
—20}~ -
_ l i | |
%0 1 5 10 15 20
m
Target Size
Figure 31. Size estimate percent error, derived trom

m4 values in Table 4, for the initial target size astimator.
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The function Int [} in Eq. 77 denotes rounding of
its argument to the nearest integer value.

The forin of Eq. 78 was suggested by the require-
ment that

log, m, 2 log, m > log m, . (81)

The coefficients (-0.71, 1.21) in Eq. 79 were derived
by imposing the dual requirements

m

M, , when G(m,) = V2 GUh,) , (82)
and

W= %, when G(m) = G(m,) . (83)

Continuing in Table § the numerical example begun
in Table 4, we find that the refined one-dimensional
target size estimator provides in the limit o high SNR
a perfect estimaie of target size; ie,

lim m=m. (84)
SNR= =

Although it would be straightforward to now explore
via simulation the noise properties of our refined target
size estimator, such as the size estimate variaice, this
has not yet been done.

The preceding one-dimensional size estimation
algorithm, Eqs. 77 through 79, can be readily exiended
to the development of refined two-dimensional size
estimates as well.

Table §
Continuatlog of the numerical example begun in Table 4. Retined estimate of
target size, m, is developed via Eqs. 77 through 79. Comparison of left-most and
right-most columns indicates that m=m, lLe, target size is correctly estimated

when signal-to-noise is high.

m m m, logm; logm, Gm,)Gmy) W W @ m
1 1 2 0 1 100 071 100 000 100 1
2 2 4 1 2 14 100 160 000 200 2
3 4 2 2 1 150 141 058 042 299 3
4 4 8 2 3 200 141 100 000 400 4
s 4 8 2 3 200 177 066 034 506 S
6 8 4 3 2 212 200 057 043 594 6
7 8 4 3 2 247 200 078 022 687 7
8 8 16 3 4 283 200 100 000 800 8
9 8 16 3 4 283 225 081 019 913 9
10 8 16 3 4 283 250 066 034 1013 10
u 8 16 3 4 283 275 054 046 11.00 1l
2 16 8 4 3 300 283 057 043 1188 12
13 16 8 4 3 325 283 068 032 1282 13
14 16 8 4 3 350 283 079 021 1383 14
15 16 8 4 3 375 283 089 011 1483 15
16 16 32 4 5 400 283 100 000 1600 16
17 16 32 4 S 400 301 090 010 1715 17
18 16 32 4 5 400 318 081 019 1825 18
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13.0 SHIP IMAGE DATA BASES

This section briefly describes the three ship image
data bases that have been used in numerical ex-
periments directed toward validating both the MRSI
processor concept and a software implementation
(App. A). The three sources of ship imagery used thus
far include:

@ NWC FLIR data,
@ Mini FLIR data, and
® APL model silhouettes.

The NWC data comprise 7537 thermal images of
eight different ship classes, observed from the air at
shallow depression angles, at aspects of 30° and 90°
off-bow, for distances of from 6 to 20 nmi. As the data
were obtained during a time of very good atmospheric
visibility, the images consequently have very high SNR
and are not directly suitable for realistically testing the
limits of signal processing methods for SNR enhance-
ment. For these data to be used, they were first degrad-
ed with progressively increasing levels of additive noise,
as illustrated in Fig. 32.

Of course, much of the interest in working with these
data, stemming from the “real world flavor” of
measured imagery, is lost when the data are syn-

Qriginal
image

SNR=10

SNR=02

Figure 32. High SNR image (top) measured under
unusually good atmosphere conditions is degraded
with progressively increasing leveis of additive noise
to simuiate observations obtained during less
tavorable weather. To the right of each image is shown
a scan line obtained at the elevation indicated by a
horizontal arrow.
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Figure 33, Measured ship thermal image threshold-
od to dispiay what appear to be ac-coupling artifacts
in front of and behind the ship, near the waterline.

thetically degraded. Since we had very little informa-
tion about either the sensor or the data reduction pro-
cess at the time this work was performed, and with
what appears to be AC-ccapling artifacts in some of
the data (e.g., Fig. 33), we have made only limited use
of these data thus far (cf. Section 14.1), It is our

understanding that a second NWC ship image data
set has been developed, containing images measured
at lower SNR. Unfortunately, the low SNR NWC data
were not available at the time this work was performed.

Figure 34a.  Ship IR image digitized from miniFLIR
esnalog video.

150

140

intensity
8

8

-
e
(=]

% 50 100 50 200 250
Pixel

Figure 34b.  Scan line through the peak intensity pix-
el in the miniFLIR image shown in Part a.
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A second source of ship thermal imagery was some
mini FLIR analog video that became available via a
previous APL program. Several frames of this data
were digitized by K. Constantikes (APL/FIF) for our
use. Since a number of important sensor characteristics
and the environmental conditions prevailing at the time
of measurement were unfortunately not known, we
have made only limited use of the mini FLIR data {cf.
Section 14.1). Visual inspection of the data, both
analog and digital, shows the SNR to be only marginal-
ly adequate for visual detection (cf. Fig. 34). These
data are therefore of at least qualitative interest, since,
once digitized, they can be used to exercise low SNR
detection processing without first requiring synthetic
noise insertion.

Our third source of ship image data, the APL model
silhouette data base, was originally developed in con-
nection with an earlier APL Independent Research and
Development (IRAL) effort [5,28). The data were ac-
quired by digitizing TV images of scale models of five
ship types at 21 distinct aspects around the starboard
bow quadrant for each of three simulated ranges (cf.
Fig. 35). Thus, a total of 315 silhouette images is
available (5 ship types x 3 ranges x 21 aspects). The
models were cast in lead at a 1:1250 scale, and are
representative of ships at the waterline. The images
are noise-free, black/white silhouettes, digitized to 512

X 512 pixels per image.

A wide variety of effects, some or all of which may
figure importantly in measured imagery, are obvious-
ly not present in the model silhouette data, viz.,

/350-
- 'y :

e,

S

e

100° - .
25 nmi el \ ™ a3g°
e
\
\
w.

5 nmi nctitea

10 nmi e

w.

Figure 35. APL model silhouettes are available for 5
ship types, each observed at 21 aspect angles and 3
ranges [28].

® background structure (eg., due to waves,
reflected clouds, natural ocean thermal varia-
tions, and slicks [26)),

ship thermal structure (e.g., stack hot spots),
atmospherics,

ship's reflection in the water,

ship’s wake, and

assorted sensor artifacts (e.g., AC-coupling,
“striping” due to uncompensated detector non-
uniformities, vignetting, etc.).

One consequence of these limitations, for example, is
that the model sithouette data cannot be used to assess
the potential usefulness of thermal gray scale infor-
mation in assisting classification.

Certain real-world characteristics can be imparted
to the model silhouettes via modeling. For example,
Fig. 36 illustrates how model silhouettes (three images
at figure upper left) may be combined with ship IR
signature data (curve at figure upper right) that in-
corporate both ship thermal modeling {20] and a
statistical treatment of weather effects [12]. Seeker sen-
sitivity is described by the NEAT parameter (curve at
figure lower right). Output from the image model is
a set of images (figure lower left) having SNRs that
reflect a wide variety of phenomenological
considerations.

It is pointed out in [5] that the model silhouettes
appear well-suited to developing ship recogniiion
techniques based on ship profile information, since
the ship profile may be substantially the same for IR
imagery as for TV imagery. Of greater interest to the
present application, it is noted that the well-controlled
measurement conditions for the model silhouettes
facilitate the development of curve fits for ship pro-
jected area Vs. viewing aspect. It is found that, with
relatively small error (cf. Fig. 37)

4750 sin @6 + 645 cos 8 , carrier

App(8) ¥ 880 sin 8 + 90 cos 8 , frigete

(85)

over the range 7° < 6° < 90° (beam aspect), and

Ay (0) ¥ A,,(7°) , 0°s 05 7°. (86)

It follows from Eq. 85 that the processor SNR
model, Eq. 70, can now be written as

Go.R) » 7-2/R,)-[(siné + 0.14 cos8)/aB) , carrier

(169/R,) [ (sin@ + 0.10 cos8)/aB) *, frigate |,

&7

a1 ma
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Figure 38. Image model combines idealized silhouettes (3 Images, upper left) and ship IR signature data. The
IR signature (curve, upper right) incorporates both ship thermal modeling and a statistical treatment of weacher

effects {12].

over the range 7° < 8 < 90°, and, at smaller aspects
G(6,R,)) ¥ G(7°,R,) , 0° <6 s 7°. (88)

We note that R, in Eq. 87 is range in nmi units, and
(o, 8) are in mr units.
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For illustrative purposes, we plot in Fig. 38 the varia-
tion of processing gain with range, as obtained from
Eq. 87, for two aspects (90° and 45 °), against a frigate
target. In obtaining Fig. 38, a spatial resolution of o
= § = 0.15 mr and a processor efficiency of n = 1
are assumed.
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1000
(880 sin 6 + 90 cos 6)

750 | P
E Model
5 5G0 silhouette
<

250
/
0 i i 1 )
o 20° 40° 60° 80° 100¢
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Figure 37. Ship projected area vs. viewing angle ob-
tained from APL model silhouette imagery cf a frigate
(solid line). Curve tit (dashed line) was obtained
heuristically.
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Figure 38. Processing gain (G) vs. range, against
frigate target, from Eq. (87). Assumed spatial resolu-
tion isa = 8 = 0.15 mr; assumed processor efficien-
cyisny = 1.
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14.0 RESULTS OF IMAGE-BASED SIMULATIONS

An image-based simulation of the MRSI processor
has been coded in FORTRAN (App. A). The simula-
tion operates on images of 64 x 256 pixels, at 35 spatial
resolutions. The program runs, with minor changes,
on both the APL NAS mainframe and on an IBM PC
AT computer and requires about 450 kbytes of
memory. The listing provided in App. A is for the IBM
PC AT version of the code. All simulation results pro-
vided in this section (the results of more than 2800
processed images) were developed on an IBM PC AT.

14.1 INITIAL QUALITATIVE RESULTS

Our first MRSI simulations against ship imagery
were performed using NWC imagery, synthetically
degraded in SNR, as discussed in connection with Fig.
32. It was observed for these first simulations that cor-
rect detections and reasonably accurate size estimates
were developed with input SNR values of 0.2. One of
the results of these early efforts is shown in Fig. 39,
in which a ship at 13.5 nmi range is correctly detected
and sized, for SNR. = 0.2.

Original image,
San Diego locale

SNR = 0.2
Simulated adverse
atmosphere

MRS! algorithm

Forced-choice
detection

Figure 39. Initial qualitative evidence of correct
simulation performance. Original high-SNR NWC ship
image (top) was degraded to SNR = 0.2 (center) to
simulate observation in a less favorabile atmosphere.
Degraded image was Input to FORTRAN simulation
(App. A) and the ship subsequently detected and siz-
ed (bottom). Range to ship is 13.5 nml.

)|

A similar qualitative result was obtained by exer-
cising MRSI against a mini FLIR image of uncertain
SNR (cf. Fig. 34). As shown in Fig. 40, in this case,
we ran MRSI in an experimental multi-pass configura-
tion, and, after three passes, were provided by MRSI
with a highly ship-like composite. The ship in this data
was observed at a range of about 10 nmi.

Original image

Pass 1

Pass 2

Figure 40. Muiltipass detection of low contrast
miniFLIR image provides shape information. Original
image shown at top; composite product of 3-pass
detection shown at bottom. Range to ship is 10 nmi.

14.2 PROCESSOR EFFICIENCY

The input images for the simulations described in
this section were various APL model silhouettes (cf.
Section 13.0), to which was added a small amount of
Gaussian noise to obtain

SNR. = 5 . (89)

As discussed in connection with Fig, 26, the detected
targets are characterized by MRSI in .erms of five
parameters, viz.,

® position (i, j.)
® size (k,, n), and
@ contrast C_.
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In addition, as discussed in connection with Fig. 26
and Eq. 67, the processor develops an estimate of the
noise variance, g, ,, for each spatial filter output. An
estimate for the detection SNR, defined in Eq. 12, is
then obtainad from the results of simulation as

SNR,, = C /o, - (90)
However, from Eq. 13
n = G'Njx = (SNR,,/SNR;) - N}y . 91

We obtain from Eqs. 90 and 91 the following estimate,
n,, for processor efficiency

~ P - 2, -4
i = (SNR,/SNR.) - N, = G- N4, (92

where SNR_. (Eq. 89) and N,,, are known a priori,
and SNR,,, is an output of the simulation.

Since Eq. 90 provides only an estimate for SNR ,,,
we improve the estimate by performing each simulated
detection a number of times {' ach time with a different
random number seed) and then averaging over the
resulting individual SNR,,, estimates.

Alternatively, Eq. 71 and the position and size
estimates provided by the simulation, (i , j) and (k,,
n,), can be used to estimate n as

m, = A/(kn, - Npy)* . (93)

Calculations of processor efficieiicy have been per-
formed for 13 model silhouettes (Table 6). The first
series of Monte Carlo simulations was performed with
a very large number (120) of trials to obtain an estimate
for how many Monte Carlo trials were needed to
achieve adequate convergence of the estimate for
SNR,,.. The silhouette image used in all 120 trials
was a frigate profile, for range = 10 nmi, aspect =
90°; the only differentiating aspect of the 120 input

Table 6
Calculations of processor efficiency 5 have been per-
formed for 13 mode! silhouettes.

Ship Aspect (°) Ranges (nmi)
Frigate 10 5, 10
45 5,10, 15
9 10, 20
Carrier 10 10, 20
45 20, 30
90 20, 30

images was in the random number seed used in
generating the additive noise. The results of these 120
trials are given in Fig. 41 as a plot of

é = ﬁdel /5 ’

as a function of the number of Monte Carlo trials.

200 T T T T T
19.5f _
G
19.0} i
L \ | 1
18.55 20 20 80 80 100 120
Trials

Figure 41. Estimated processing gain, as a function
of the number of Monte Carlo trials. The same
silhouette image was used in all 120 trials (frigate at
10 nmi, aspect = 90°). 120 distinct images were
created by adding to the noise-free ship image 120 dif-
ferent noise images.

We surmised from this numerical experiment that
no more than 15 Mont¢ Carlo trails are required to
develop an estimate for G accurate to within 5 or 10%
of the fully converged value. All consequent determira-
tions of y via simulation for the remaining 12 ship pro-
files listed in Table 6 were established as averages over
15 Monte Carlo trials.

Estimates of processor efficiency for the 13 ship pro-
files, obtained using Eq. 92, are provided in Table 7.
Estimates of 5 based on Eq. 93 are given in Table 8.

The dispersion of 7, values in Table 7 is bounded
by

| 7, - 0.82 | < 0.08, (94)
with mean and variance

E(#4,) = 0.81 (95)
Var(4,) = (0.048)% .

The dispersion of 5, values in Table 8 is bounded by
| 4, — 0.76 | < 0.05 , (96)
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Table 7

Processor efficiency, », is estimated using Eq. 92 and results from image-based
simulations, for 13 ship silhouettes. Each value of G in this table is established
as an average over 15 Monte Carlo iterations; thus, a total of 195 images was pro-
cessed to obtain these results. Assumed \FOV = 0.073 mr

Ship Aspect (°) Ranges (nmi) N, G '

Frigate 10 5 479 16.77 0.77
10 139 9.32 0.79

45 5 1247 30.69 0.87

10 355 15.66 0.83

15 139 9.49 0.80

90 10 477 19.63 0.90

20 122 8.90 0.80

Carrier 10 10 702 20.66 0.78
20 175 10.00 0.76

45 20 434 18.14 0.87

30 182 10.66 0.79

90 20 555 20.24 0.86

30 248 11.82 0.75

Table 8
Processor efficiency for 13 ship profiles as estimated from Eq. 93
G(PSI) G(ISI)
Ship Aspect (°) Ranges (nmi) N, A/(k, n)” 1,

Frigate 10 5 21.89 16.62 0.759

10 1.79 9.19 0.780

45 5 35.31 26.66 0.755

10 18.84 13.74 0.730

15 1.79 9.19 0.780

90 10 21.84 17.50 0.801

20 11.05 8.75 0.792

Carrier 10 10 26.05 19.49 0.748

20 13.23 9.72 0.735

45 20 20.83 16.18 0.777

30 13.49 10.25 0.760

90 20 23.56 18.03 0.765

30 15.75 11.23 0.713
with mean and variance 7208, (98)
E(3,) = 0.76 (®7)  accurate to about +10%, for frigate and aircraft car-

Var(s,) = (0.025)° .

Based on a total of 195 Monte Carlo simulations

with 13 different ship profiles, the efficiency of MRSI

can be characterized as

rier profiles, observed at ranges from 5 to 30 nmi, and
for aspect angles from 10° to 90°,

The rather remarkable invariance of n with respect
to ship type, scale, and viewlag aspect was perhaps
presaged by our earlier analytically derived results for
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bar targets, Fig. 29. In a speculative vein, we note that
the bar targe: results can be summarized as

| 9 -- 0.92 | < 0.08 .

Heuristically extending the bar target results to two
dimensions

7% (0.92)2 = 0.85 ,

we get a result fairly close to Eq. 98.

14.3 THRESHOLD SNR FOR
FORCED CHOICE DETECTION

We explored systematically the variation of pro-
bability of forced choice detection (P,) with SNR for
three ship profiles, involving 2500 Monte Carlo trials
(Table 9). For each ship profile, for each SNR value,
100 Monte Carlo trials were performed; the relative
number of times the declared target overlapped the
true target was used as an estimate for P,

Our results are presented in Fig. 42 as plots of P,
vs. SNR, parametric in viewing aspect. Each of the
25 data points in Fig. 42 was established via 100 image-
based simulations.

The data are replotted in Fig. 43 as P, vs. SNR_,
where SNR, is given by Eq. 12 as

SNR,, = 1+ SNR. + Nl

with an assumed value of n = 0.81. Also shown as
a solid line in Fig. 43 is a plot of the function

Py(SNR,,) = ®(SNR,, - 2.8) , (99)
where

() = (1 2Zx) _f; exp(—1t/2)dt .

Intevestingly, it has been found in psychovisual ex-
periments performed with human observers of elec-
tronic displays that a 509 probability of detection
against rectangular target images requires a “display
SNR” of 2.8 [4, p. 86]). Equation 99 is, as per the
discussion in [3, p. 197], a curve fit to experimental
data descriptive of human vision system (HVS)
performance.

The fact that the P, data for all three aspect angles
are nicely fit in Fig. 43 by a single universal curve sug-
gests that P, statistics may be derived from the
universal curve for a wide variety of ship target pro-
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files. Testing the generality of this hypothesis would,
however, clearly require more simulation and analysis
than presented in this report.

1.0 9 a=—0—zg=~0

0.8

A
oo, / o

0.4 .// / /

02y o

0.0 Y T T S 1
0.1 0.2 0.3 04 0.5 06

SNR,

Figure 42. Probability of detection (Pp) vs. channel
SNR (SNRg). Fripate silhouette having range resolu-
tion product = 0.73 nmi-mr. Curves are paranetric in
viewing aspect: @ = 90° B = 45° O = 10°

1.0} o pea °
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0.0

4 5 6 7 8 9
_SNR,,,

Figure 43. Detection probability (Pp) vs. detection
SNR (SNRqgt, defined in Eq. 12). Frigate silhouette,
(range x resolution) = 0.73 nmi-mr. Three symbol types
correspond to different viewing aspects: @ = 90°
0O = 45% B = 10° Solid line is an analytical curve
fit to experimental psychovisual data, Eq. (89).
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Table 9
Probabiiity of detection statistics were accumulated as a function of SNR for a tota!
of 2500 Monte Carlo trials. Range - resolution product = 0.73 nimi - mr

Range of SNR  Monte Carlo Trials
Ship Aspect (°) Npx  SNR Values Increment Per SNR Value

Frigate 10 139 0.15-0.60 0.05 100
45 355 0.15-0.60 0.05 100
90 477 0.20-0.60 0.10 100
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15.0 SYSTEM CONCEPTS FOR CUED DETECTION AND ATR 3

As discussed in Section 1.0 the current study was
motivated by an interest in the antiship missile (ASM)
application. In this section, we discuss some top-level
ASM system concepts in which the MESI processing
approach could be employad.

Figure 44 depicts a tactical scenario in which an
ASM has been launched in the general direction of
a hostile surface force, with the problem of target selec-
tion to be addressed post-launch, The missile seeker
acquires a first candidate ship target, which is subse-
quently classified as ineligible for attack. The ASM
continues its flight, and, as depicted ia Fig. 44, ac-
quires a second ship, which it classifies and engages
as a high-priority hostile combatant.

The initial pre-acquisition surveillance performed
by the ASM seeker is presumably performed over a
field-of-view much larger than that of typical thermal
imaging systems and TVs. The initial target acquisi-
tion could be performed by MRSI processing, which
then directs the seeker’s further attention to the
neighborhood of “‘objects” requiring classification.
Thus, the MRSI processor is followed by a classifica-
tion processor that makes a series of judgments regar-
ding the nature of each object, viz., ship/non-ship;
combatant/non-combatant; hostile/friendly; high
value/low value; etc. Two system concepts for
classification will be described.

Figure 44 shows a system concept in which video
is telemetered from the ASM to an aircraft, where
target classification is performed and attack sequen-

oo

Video
link

)
Commercial
AN
Acquire/classify/disengage

Filgure 44. ASM attack scenario, depicting system
concept in which target acquisition is performed by
MRS, and target classification is performed off-board
by a person inspecting cued images transmitted via
video link from the ASM.
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cing initiated by a human operator. According to this
concept, MRSI plays the role of a target “cuer”, reduc-
ing the bandwidth requirements of the video link and
unburdening the human image interpreter from the
need to perform visual search over a v ide field-of-view.

Figure 45 depicts an alternative system concept in
which classification is performed on-board the missile
by an autonomous target recognition (ATR) algorithm.

A potential problem with both system concepts is
that the seeker’s acquisition range is iikely to be much
greater than the range at which aneurate classification
can be performed, since classification both by eye and
by ATR is likely to have far more demanding SNR re-
quirements than the MRSI acquisition algorithm.
Although the ASM could simply fly toward each
potential target until the SNR grows large enough to
permit classification, this approach could result in the
waste of considerable fuel capacity.

A second, more satisfactory, splution to the acquisi-
tion/classification SNR mismatch problem has been
suggested by W. J. Tropf (APL). Following MRSI ac-
quisition, the seeker could be directed into a “classifica-
tion mode”, in which scan is performed very slowly
over a very narrow field-of-view in the neighborhood
of the potential target. The reduced angular rate-of-
scan, combined with a proportionally reduced post-
detector-amplifier electrical bandwidth, then provides
the SNR boost required for classification, without
sacrificing spatial resolution.

For example, the classification mode may be per-

Reacquire/classify/attack
> Bt e
et B o
Reference image | ; ) | _#( e
\ COmr;verclal

\
Y4

On-board processing

Sensed image

N
Acquire/classify/disengage

Figure 45. ASM attack scenario, depicting system
concept in which target acquisition is performed by
MRSt and target classification is performed by on-
board ATR.
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formed with an angular rate-of-scan 25 times slower
than the acquisition mode,

b= 0725 ,

where § was defined previously in connection with Eqgs.
25 and 27. If the detected waveforms are sampled at
the same rate during slow scan (classification mode)
as during fast scan (acquisition mode), the data dur-
ing slow scan will be over-sampled 25-fold, from the
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standpoint of satisfying Nyquist’s criterion and preser-
ving spatial detail. Consequently, the A/D process can
be followed by a pre-classification processor con-
figured as per Fig. 8 and Eq. 23, in which the data
are smoothed and decimated-in-time 25-fold, with a
consequent 5-fold SNR gain.

The cued slow-scan classification mode is potentially
useful to both system concepts, Figs. 44 and 45, i.e.,
regardless of whether classification is performed by
ATR or by a human.
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16.0 A NOVEL METHOD FOR CLOUD CLUTTER SUPPRESSION

Cloud reflections in the water are tne most intense
natural source of sea surface thermal structure [26],
and are consequently expected to offer the most severe
source of false alarms to this (and other) ship IR detec-
tion schemes. In this section we present a no el method
for suppressing false alarms induced by cloud reflec-
tions from the sea.

Our new clutter suppression approach entails cor-
elating MRSI detections obtained below the horizon
(due either to a ship or a cloud reflection) with detec-
tions obtained above the horizun at the same azimuth:
the presence of cloud structure above the candidate
target’s location indicates a likely false target, while
the absence of clouds indicates a likely true target.

We illustrate the method with the aid of Fig. 46,
depicting the spatial variation of sky radiation
temperature (top) and sea surface radiometric
temperature (bottom), as measured at 10.6 um, in the
presence of clouds. These data were measured by
JHU/APL with a calibrated dual-band IR radiometer
installed in a Navy P-3 aircraft [26). For example, the
sea surface thermal artifact labelled A’ in the lower
trace is clearly indicated as a cloud reflection, since
it correlates directly with thermal structure observed
above the horizon, ie., the artifact labelled A in che
upper trace of the figure,

The vector of attributes attached to eacii MRSI
detection (cf. Fig. 26) can be augmented with a “quali-
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Figure 46. Spatial variation of sky radiometric
temperature (top) and sea surface temperature (bottom)
measured by APL at 10.6 um, in the presence of clouds
(28]. Sea surface artifacts labelled with primed letters
in the lower trace are reflections of cloud structures
labelled with corresponding unprimed letters in the up-
per trace.

ty” measure derived from correlation with the sky
measurements.

The mechanization of our cloud clutter discrimi-
nant is simplified by making use of the fact that a
cloud’s contrast against the sky is generally several hun-
dred times greater than the contrast of the cloud’s
reflection against the sea. For example, we see from
Fig. 46 that cloud/sky contrast is about 50 K, while
the reflection/sea contrast is only about 0.1 K. In ad-
dition, since there is no particular benefit to be deriv-
ed from spatially resolving the fine details within the
cloud structure, the sky radiance data may be acquired
by means having greatly reduced resolution relative to
the means used for detecting ships against the ocean
background. In Table 10 we compare approximate sen-
sitivity and spatial resolution requirements for cloud
detection with corresponding requirements for ship
detection.

As a first implementation possibility, we consider
obtaining sea/ship radiance data on a forward scan
in azimuth, and sky/cloud radiance data on the
backscan. In this case, the backscan is stepped upwards
in elevation, and executed at a greatly increased angular
rate-of-scan, relative to the forward scan. Considerable
image smear is tolerable on the backscan, due to the
relaxed spatial resolution requirements for the sky
measurements (cf. Table 10). Moreover, if necessary,
excessive smear can be prevented simply by widening
the post-detector electronic passband; the consequent
increase in noise is accomodated by the relaxed sen-
sitivity requirements during the backscan (cf. Table 10).
Relaxed spatial resolution requirements in elevation
can be exploited as a reduction in signal processing
requirements during the backscan. This is accomplish-
ed by adding together the detector outputs in groups
(say, of five each), to obtain a single reduced-resolution
video channel for each group.

Table 10
Sensitivity and spatial resotution requirements for
ship detection and cloud/clutter detection (approx-
imate values).

Ship Detection Cloud Detection

Ficld of Search Below horizon Above horizon
Sensitivity, NEAT 01K SK
Spatial Resolution 0.2 mr, square I mr, square
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A second implementation possibility is to perform
the sea and sky measurements simultaneously (ie., on
the same scan) by having a partitioned focal plane:
small elements at the bottom of the focal plane are
used for below-horizon search, and much larger detec-
tors at the top of the focal plane are used for above-
horizon search. The optics design for this sensor con-
cept is complicated by the requirement for wide eleva-
tion instantaneous field-of-view. However, this problem
is partially ameliorated by the fact that a considerable
degradation in the optics blur can be tolerated over

the upper part of the focal plane.

Yet a third implementation possibility is to perform
the sky search with a separate telescope. The telescope
used for sky search can be very small, perhaps just
0.5-1 inch in aperture.

Finally, additional sensor concepts for nearly
simultaneous sky/sea search can be based on cross-
horizon scanning (discussed briefly in connection with
Eqs. 60-62). The principal penalty imposed by this ap-
proach is a relatively complicated scanning mechanism,
compared to seeker heads that scan in azimuth.
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17.0 CONCLUSIONS

A signal processing algorithm (MRSI) has been
devised to maximize the detection rauge of imaging
IR seekers against ship targets. The algorithm com-
prises a bank of two-dimensional spatial filters, hav-
ing rectangular kernels matched to targets of various
aspect ratios and sizes, implemented in a separable
form that appears well suited to processing in real-time
image data acquired sequentially by column. The per-
formance of MRSI has been studied analytically for
simple bar-target-in-noise images and studied
numerically via simulations performed on a number
of measured and simulated ship images. .

The SNR gain provided by MRSI (relative to hot-
spot detection) can be estimated as

11N,'f’, X

where N, is the number of pixels occupied by the
target in the image, and = 0.81, 10%. The pro-
cessor efficiency, 5, is remarkably invariant with respect
to sensor/ship range, viewing aspect, and ship class.

61

The principal simulation results are plots of detec-
tion probability (P,) vs. SNR (Figs. 42 and 43), bas-
ed on 2500 image-based Monte Carlo trials. A curve
fit to the numerically-developed probabilities of detec-
tion appears to provide a universal curve that can be
used predictively for ships of differing class, observ-
ed at a variety of aspects and distances. Interestingly,
the curve fit to MRSI/Monte Carlo P, results coin-
cides with a previously published curve fit to data ob-
tained from visual detection experiments performed
with human observers of TV displays [3].

Section 15.0 describes two ASM system concepts,
distinguished by the means of target classification, viz.,
classification performed on-board the missile by an
ATR algorithm or off-board by a person inspecting
imagery telemetered from the missile. Using MRSI to
cue a slow-scan/high sensitivity “classification mode”
results in substantial predicted improvements for both
system concepts.

In Section 16.0 we present a new method for sup-
pressing false alarms caused by cloud reflections from
the sea surface.
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APPENDIX A: FORTRAN LISTING OF MRSI SIMULATION

s
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LISTING OF F1F.SRA.MRSIPC

PROGRAM MRSIPC
C 29 APRIL 1987
REAL*8 DSEED
REAL*4 GAIN
COMMON /SEED/ DSEED,NSEEDS, ISKIP
COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /GAYN/ GAIN(1000)
DATA RMS,BCKGND /1.0,100.0/

CALL RDINPT

NTNRS = §

DO 400 ITNR=1,NTNRS

ITRIAL = 0O

TNR = 0.05 + FLOAT(ITNR) * 0.10
TGT = BCKGND + TNR * RMS

DO 100 ISEED=1 NSEEDS
ITRIAL = ITRIAL + 1
DSEED = DSEED + 1.0D-03

CREATE NOISE FRAME...

o000

CALL GAUS(RMS)
CALL ADNOIS(0,1.)

CALIBRATE MRSI USING NOISE-ONLY FRAME...

o X Ne]

ITST = ISKIP * (ISEED / ISKIP)
IF(ITST.EQ.ISEED) WRITE(22,210)
CALL INIT(KK2P1)
DO 200 KK=1,KK2P1l
CALL XAV (KK)
IMKK = IM(KK)
DO 200 I = 1,IMKK
CALL IAV(I,KK)
CALL BES(I,KK)
CALL NE1(I,KK)
200 CONTINUE
CALL NE2
CALL SIGOUT

CALIBRATION PROCESS IS COMPLETE.
ADD SHIP IMAGE TO NOISE FRAME...

aO0O00Nn

CALL ADSHIP(TGT,BCKGND)
CALL ADNOIS(1,1.)

USE MRSI TO LOOK FOR SHIP...

oo

CALL INIT(KK2Pl)
DO 300 KK = 1,KK2P1
CALL XAV(KK)
IMKK = IM(KK)
DO 300 I = 1,IMKK
CALL IAV(I,KK)
CALL BES(I,KK)
CALL TD(I,KK)
300 CONTINUE
CALL TDOUT(TNR,GAIN(ITRIAL),ISEED)

69

12:40 PM

PAGE 001
29 APR 87




Ml o I G W MW LW CF W YT I W LT W LW LW A YW A W Ty w w--—‘--‘u--w-a-“--—---T

PAGE 002
LISTING OF F1F.SRA.MRSIPC 29 APR 87

100 CONTINUE
IF(ITRIAL.LT.ISKIP) GO TO 400

GENERATE SUMMARY OF SNR GAIN PERFORMANCE...

CALL GOUT(ITRIAL,ISKIP)

0O 000

400 CONTINUE
210 FORMAT(SX,'BEGIN CALIBRATION PROCESS')
STOP
END
c
ChkmhkkkhkhkkhhkkhkAhkhhhhhhRkARA*khkhhhhhhhkhhkkhhhkkkhhkhkkhhkkAkRAhkk kR XX
C
SUBROUTINE RDINPT

C

C** READS INPUT DATA

C
LOGICAL*1 TEMP(64,256)
LOGICAL*4 LSHIP(64,256)
INTEGER*4 ITEMP4(64,256),ISKIP
REAL*4 ARAY,SHIP
REAL*8 DSEED
COMMON /SEED/ DSEED,NSEEDS, ISKIP
COMMON /XPARAM/ IMAX,KMIN,KMAX
COMMON /SPARAM/ JMAX,NMAX,JAVG,JDEC
COMMON /RAWFRM/ ARAY(64,256),SHIP(64,256)
COMMON /FILTER/ TS,FCO,NORDER,ISET
EQUIVALENCE (LSHIP,ITENP4)

' R O o &8 g )

e EE

READ(21,105) DSEED,NSEEDS, ISKIP
WRITE(23,106) DSEED,NSEEDS, ISKIP
105 FORMAT(1X,D14.7,1X,13,1X.12)
106 FORMAT(1lX, 'DSEED=',D14.7,3X, 'NSEEDS=',613,3X, 'ISKIP=',12,/)

DO 50 I = 1,64
50 READ(20,100) (TEMP(I,J) , J=1,256)

- =

DO 60 J=1,256

DO 60 I=1,64

LSHIP(I,J) = TEMP(I,J)

SHIP(I,J) = ITEMP4(1,J) / 255
60 CONTINUE 1

READ(21,110) IMAX,JMAX,KMIN,6KMAX, JAVG,JDEC,NMAX
WRITE(23,120) IMAX,JMAX, KMIN,KMAX, JAVG,JDEC, NMAX
READ(21,115) TS, FCO,NORDER,ISET
WRITE(23,125) TS,FCO,NORDER,ISET
100 FORMAT(2(128A1))
110 FORMAT(2(I3,1X),4(12,1X),I3)
115 FORMAT(F9.6,1X,F7.1,1%,12,1X,12)
120 FORMAT(1X,'IMAX=', I3,2X,'JMAX=',13,2X, 'KMIN=',612,2X, 'KMAX=',612,2X,

+ *JAVG=',12,2X, 'JDEC="',I2,2X, 'NMAX=',13,/)
125 FORMAT(1X,'Ts=',F9.6,3X,'FC0=',F7.1,3X, '"NORDER=',12,3X, 'ISET=',
+ 12,/) .
RETURN
END -—

c
CRAAKAAKK Ak ARARK KK KKK KAk Ak dkokskkd sk ok ko koo sk dekok & Kok ok sk ok sk ok e e e Aok ek ok ok ok e e ok ook
C
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SUBROUTINE INIT(KKZP1)

¥+
*

*
*

INPUT (FROM RDINPT):
ARAY(T1,J)

IMAX, JMAX
KMIN,KMAX
JAVG
JDEC
NMAX

V(1,J)

KK

K(KK)

IM(KK)
KK1

KK2

NN

2 Xe ke Xz ie ke ie o iR ke ke e N Re X Re N R Ne X N Ne Ne Ko e e Ee e Ko Ne o e Ne Ne Ne R Re Ee Ko Ko Ko Ko N o]

INPUT COMMON BLOCKS

INITIALIZATION FOR ROUTINES XAV & IAV

'D0 300' LOOP PERFORMS LDETECTION PREPROCESSING
(BOXCAR INTEGRATION AND DECIMATICN-IN-TIME)

I=1,2,...,IMAX

J=1,2,...,JMAX

MIN/MAX VALUES (CROSS-SCAN RESOLUTION PARMS.)
IN-SCAN AVERAGING FACTOR

IN-SCAN DECIMATION FACTOR

MAX. VALUE (IN-SCAN RESOLUTION PARAMETER)

OUTPUT / DATA FRAME WITH IN-SCAN DECIMATION:

J=1,2,...,JMARX2

OUTPUT / CROSS-SCAN AVERAGING PARAMETERS:

INDEX FOR K(KK), IM(KK)
=1,2,3,...,(KK2+1)

CROSS-SCAN RESOLUTION PARAMETER
=1,2,4,8,...,KMAX (POWERS OF 2)

MAX. VALUE OF I FOR V(I,J)

SMALLEST VALUE OF KK FOR WHICH CROSS-SCAN
PROCESSING SHOULD BE PERFCURMED

NO. OF CROSS-SCAN AVERAGING STAGES

OUTPUT / IN-SCAN AVERAGING PARAMETERS:

INDEX FOR N(NN)
=1,2,3,...,(NN2+1)

NO. OF PARALLEL CHANNELS OF IN-SCAN PROCESSING

IN-SCAN RESOLUTION PARAMETER
=1,2,4,8,...,NMAX (POWERS OF 2)

MAX. VALUE OF J FOR V(I,J)

(FROM RDINPT)

COMMON /XPARAM/ IMAX, KMIN, KMAX
COMMON /SPARAM/ JMAX, NMAX,b JAVG,JDEC
COMMON /RAWFRM/ ARAY(€4,256)

COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256) ,VIKK(256,7)

C OUTPUT COMMON BLOCKS
c

KK1 =

KK2 =
c

KK2P1=KK2+1
DO 100 KK=1, 6KK2P1
K(KK) = 2**(KK-1)

INT(1.443*ALOG(FLOAT (KMIN)))
INT(1.443*ALOG(FLOAT (KMAX)))

7
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IM(KK) = IMAX - K(KK) + 1
100 CONTINUE

NN2 = INT(1.443*ALOG(FLOAT(NMAX)))

NN2P1=NN2+1

DO 200 NN=1,6NN2P1

N(NN) = 2**(NN-1)
200 CONTINUE

DO 300 I=1,IMKK
IPKMl = I + K(KKM1)
TEMP1(I) = (V(I1,3) + V(IPKM1,J)) / 2.0

72
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C
JAVGM1 = JAVG - 1
JMAX1 = JMAX - JAVGM1
JMAX2 = JMAX1/JDEC
c
XJAVG = FLOAT(JAVG)
JDECM1 = JDEC - 1
c
DO 300 I=1,IMAX
c
C PERFORM IN SCAN AVERAGING ...
c
DO 310 J=1,JMAX1
SUM = 0.0
JPJ=J+JAVGM1
DO 320 JSUM=J,JPJ
SUM = SUM + ARAY(I,J5UM)
320 CONTINUE
V(I,J) = SUM/XJAVG
310 CONTINUE
c
C PERFORM IN-SCAN DECIMATION ...
c
JHOP = -JDECM1
DO 330 J=1,JMAX2
JHOP = JHOP + JDEC
V(I,J) = V(I,JHOP)
330 CONTINUE
300 CONTINUE
RETURN
END
c
c*****************************'k*****************************************
c
SUBROUTINE XAV(KK)
c
C** CROSS-SCAN AVERAGING PROCESSOR, KK-SECTION
c
COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JIMAX2
COMMON /NUFRMS/ V(64,256),VIKK(256,7)
COMMON /WORK/  TEMP1(64),TEMP2(256,7)
c
IF(KK.EQ.1) GO TO 100
IMKK = IM(KK)
KKM1 = KK ~ 1
DO 200 J=1,JMAX2
c

Ll‘!-l-mz«::—-!mnl--nmmana|a
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300 CONTINUE

DO 400 I=1,IMKK
V(I,J) = TEMP1(I)
400 CONTINUE
200 CONTINUE
100 CONTINUE
RETURN
END
C
CHrrxAkhRRkhARAARARARKRRAAK IR K KAKKIK KAk kh kA hkk Kk kAhkhkkkhkkkhkkhhhkrhkk
C
SUBROUTINE IAV(I,KK)

C
C** IN-SCAN AVERAGING PROCESSOR / I-K SECTION
C
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256) ,VIKK(256,7)
COMMON /WORK/ TEMP1(64) ,TEMP2(256,7)
C

DO 50 J = 1,JMAX2
VIKK(J,1) = V(I,J)
50 CONTINUE

c
C RECURSIVE FILTER INITIALIZATION: VIKK(N(NN),NN)
C
WNNM1 = V(I,1)
NN2P1=NN2+1
DO 100 NN=2,NN2Pl
SUM = 0.0
J1 = 1 + N(NN-1)
J2 = N(NN)
c
DO 200 J=J1,J2
SUM = SUM + V(I,J)
200 CONTINUE
c
WNN = WNNM1 + SUM
VIKK(J2,NN) = WNN/FLOAT(J2)
WNNML = WNN
100 CONTINUE
c
C RECURSIVE FILTER
c
IM2M1=JMAX2-1
DO 300 NN=2,NN2Pl
NNN=N(NN)
c

DO 300 J=NNN, JM2M1

JP1l = J+1

JP1MN=JF1-NNN

SUM = V(1I,JP1) - V(I,JPIMN)

SUM = SUM/FLOAT(N(NN))

VIKK(JP1,NN) = VIKK(J,6NN) + SUM
300 CONTINUE

RETURN
END
c
ke ek ek ok ok ke ok sk ok ok e e o e ke ok ok ok ok o o e Kk ke ok ok e Aok gk ok ke e ek ok ek ook ke sk ok ok e ok ok ok ok
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SUBROUTINE ADSHIP(TGT,BCKGND)

COMMON /XPARAM/ IMAX,KMIN,LKMAX
COMMON /SPARAM/ JMAY ,NMAX,JAVG,JDEC
COMMON /RAWFRM/ ARAY(64,256) ,SHIP(64,256)

DELTGT = TGT - BCKGND

DO 10 J=1,JMAX

DO 10 I=1,IMAX

ARAY(I,J) = BCKGND + DELTGT*SHIP(I,J)
CONTINUE

RETURN
END

ChhhkkkhkkhhkhkhhhkhkhkhrARAkhkhkkhkhkkkhkhkkhhhhkRkhhhhkkkhkkRhkhkhhkhhkdkhhi trkihkk

C

C
Ch*

OO0 NONOONO0OO00NO00O000000n

c
C
c
cc

cc
cC
cc
cc

SUBROUTINE GAUS(SIG)

CREATES A FRAME OF GAUSSIAN NOISE WITH A WHITE OR DIGITAL
BUTTERWORTH POWER SPECTRUM.

INPUTS REQUIRED:
SIG = RMS VALUE OF OUTPUT FRAME
DSEED = SEED FOR RANDOM NUMBER GENERATOR
ISET = 0 , WHITE NOISE
1 , DIGITAL BUTTERWORTH FILTER (STEARNS)

IF (ISET .EQ. 1) , ALSO NEED:

TS = TAMPLING INTERVAL
FCO = 3 DB CUT-OFF FREQUENCY
NORDER = FILTER ORDER

OUTPUT :
GNOISE(64,256) = OUTPUT DATA FRAME

NOTE:
1) DATA ARE WHITE IN THE FIRST COORDINATE AND BUTTERWORTH-
FILTERED IN THE SECOND COORDINATE
2) 1SET=1 OPTION UNAVAILABLE ON PC VERSION

REAL*4  X(16384),Y(16384)
REAL*8  DSEED

COMMON /SEED/ DSEED ,NSEEDS, ISKIP
COMMON /GSNS/ GNOISE(64,256)
COMMON /FILTER/ TS,FCO,NORDER,ISET
DATA NR /16384/

GENERATE WHITE GAUSSIAN NOISE.

CALL GGNML(DSEED,NR,X)
CALL GGNMLS(DSEED,NR)

IF(ISET .NE. 0) GOTO 50
DO 25 K=1,NR

74
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cC Y(K) = X(K)
CC25 CONTINUE

c GOTO 60
C
C  APPLY BUTTERWORTH FILTER.
C
C 50 CALL LOBWF(X,Y,NR,TS,FCO,NORDER,S5,1)
c
C CALCULATE STATISTICS OF FILTERED DATA.
c
C60 CALL STATSS(Y,NR,YMIN,L YMAX, YAVE,YVAR, YSIGMA)
CALL STATS$S(GNOISE,NR,YMIN, YMAX, YAVE,YVAR,YSIGMA,A,B)
C
C NORMALIZE THE OUTPUT DATA TO ZEROC MEAN AND STD.DEV. = 'SIG.'
C
C = SIG/YSIGMA
DO 100 J=1,256
DO 100 I=1,64
c N = J+(I-1)*256
c GNOISE(I,J) C*( Y(N) - YAVE)

GNOISE(I,J)
100 CONTINUE

RETURN

END

C*(GNOISE(I,J) - YAVE)

c
CRkkkskdededkk ik ok kk ks dedk Rk de ek ek Ak ok kK Kk ok ik ok sk dk ko gk sk o gk sk ok Ak e ek ke ok ok ok ok
C

SUBROUTINE ADNOIS(IOPT,TNR)

c
COMMON /XPARAM/ IMAX,KMIN, KMAX
COMMON /SPARAM/ JMAX ,NMAX, JAVG,JDEC
COMMON /RAWERM/ ARAY(64,256)
COMMON /GSNS/ GNOISE(64,256)

c

OPT = FLOAT(IOPT)

DO 10 J=1,JMAX

DO 10 I=1,IMAX

ARAY(I,J) = OPT * ARAY(I,J) + GNOISE(I,J)/TNR
10 CONTINUE

RETURN

END
C
ChARARKARARKKAKRARARKRKKRKAAKARKKK KKK R Kk Ak kk KhRA R khk kA Rk ARA KR IKR KKKk Kk &
c

SUBROUTINE NE1(I,KK)

c
C** NOISE ESTIMATOR - ESTABLISHES RMS VALUES OF THE WAVEFORMS OUTPUT
C BY 'BES(I,KK)' UNDER CLOSED-COVER CONDITIONS
c
REAL*4 X(1536)
COMMCN /XINIT/ KK1,KK2,K(5),IM(S)
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256),VIKK(256,7)
COMMON /SIGS/ SIG(5,7),XSUM(64,5,7) ,XSQR(64,5,7) ,XNUM(64,5,7)
C

NN2P1 = NN2+1

DO 10 NN=1 NN2P1l

INN = 1/NN

JSTART = 2*N(NN)+INN
JSTOP = JMAX2-N(NN)-INN
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NI =0
DO 20 J=JSTART,bJSTOP
NI = NI+l
X(NI) = VIKK(J,NN)
CONTINUE

CALL STATS$S(X,NI,A,B,C,D,E,XSUM(I,KK,NN),XSQR(I KK,NN))
XNUM(I,KK,NN) = FLOAT(NI)
CONTINUE

RETURN
END

C
ChkkikkhikhkhkhkhkkhkkhkhhkhkhkkhkhhhkhhkkhkhkhkhhkkAkhkkkkkkkhkhkhkhkhkkhkhkkhhkkhihkhk

c
c

SUBROUTINE NE2

C** NOISE ESTIMATOR (CONTINUATION OF 'NE1')

c

200

COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7), IJMAX2

COMMON /SIGS/ SIG(5,7),XSUM(64,5,7),XSQR(64,5,7), XNUM(64,5,7)
KK1P1 = KK1+1

KK2P1 = KK2+1

NN2P1 = NN2+1

DO 100 KK = KK1P1,KK2P1
DO 100 NN = 1,NN2P1
XAVE = 0.0

TSOR = 0.0

RTOT = 0.0
SIG(KK,NN) = 0.0

IMKK = IM(KK)

DO 200 I = 1,IMKK

XAVE = XAVE + XSUM(I,KK,NN)
TSQR = TSQR + XSQR(I,KK,NN)
RTOT = RTIOT + XNUM(I,KK,6NN)
CONTINUE

[

IF(RTOT.LE.0.0) GC TO 100

XAVE = XAVE / RTOT

ASQR = TSQR / RTOT

VAR = ASQR - XAVE * XAVE

VAR = VAR * RTOT / (RTOT - 1.0)
SIG(KK,NN) = SQRT(VAR)

100 CONTINUE

C

C THIS IS A SHORTCUT, PROVIDING QUICK ANSWERS FOR WHITE NOISE...

RTZ SQRT(Z.)

DO 300 KK = KK1P1,KK2P1
SIG(KK,NN) = SIG(KK,2)/C2

CC300 CONTINUE
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RETURN

END
c
Chhkhkdkkkddhkikidhhskdrkdkhrkkokihkhhhkhkhhhrhkihkkhhkhkkkikkkkhhkkhkkikkkkkikkkkkk
c

SUBROUTINE SIGOUT

c
C** PRINTS OUTPUT OF SUBROUTINE 'NE'.
c
COMMON /XINIT/ KK1,KK2,K(S),IM(S)
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /SIGS/ SIG(S,7),XSUM(64,5,7),XSQR(64,5,7),XNUM(64,5,7)
c
KK1P1 = KK1+1
KK2P1 = KK2+1
NN2P1 = NN2+1

WRITE(23,105)

WRITE(23,110) ((SIG(KK,NN) , NN=1,6NN2P1) , KK=KK1Pl,6KK2Pl)
105 FORMAT(1X,/,1X,'SIGMAS')
110 FORMAT(6(1X,F7.3))

RETURN
END

C
€k o 7 de ok o vk ok ok e ok gk ok ok ok Ak v ok Kk ok ek ok e ok ok ok ok ok ok ok o ke e ok ok e sk ok ok ok gk ok ok e ok sk ke sk e ok ok ok ook ok ke ok e kol ok e ok e

C
SUBROUTINE BES(I,KK)

C
C** BACKGROUND ESTIMATION & SUBTRACTION
c
COMMON /XINIT/ KK1,KK2,K{5),IM(S)
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256) ,VIKK(256,7)
COMMON /SIGS/ SIG(5,7).XSUM(64,5,7) ,XSQR(64,5,7) ,XNUM(64,5,7)
COMMON /WORK/ TEMP1(64) ,TEMP2(256,7)
C
NN2P1 = NN2+1
c
DO 200 NN=1,NN2P1
INN = 1/NN
JSTART = 2*N(NN)+INN
JSTOP = JMAX2~N(NN)-INN
NNM1 = NN-1+INN
c

DO 200 J=JSTART, JSTOP
JL = J-\3*N(NN))/2 - INN
JR = J+N(NN)+INN
VHAT = (VIKK(JL,NNM1) + VIKK(JR,NNM1))/2.0
TEMP2(J,NN) = VIKK(J,NN) - VHAT
200 CONTINUE

c
DO 300 NN=1,NN2Pl
INN = 1/NN
JSTART = 2*N(NN)+INN
JSTOP = JMAX2-N(NN)-INN
c

DO 300 J=JSTART,JSTOP
VIKK(J,NN) = TEMP2(J,NN)
300 CONTINUE
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RETURN
END
c

C*l’t**********************k*****'k*'k***k***********************************)’(****

C
SUBROUTINE TD(I,KK)

c
C** THRESHOLD / DECISION PROCESSOR
C
COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMHMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256),VIKK(256,7)
COMMON /SIGS/ SIG(5,7),XSUM(64,5,7) ,%XSQR(64,5,7) ,XNUM(64,5,7)
COMMON /XCDNS/ JX(64,5) ,NNX(64,5),VX(64,5)
c
NN2P1 = NN2+1
C
DO 100 NN=1,NNZ2Pl
INN = 1/NN
JSTART = 2*N(NN)+INN
JSTOP = JMAX2-N(NN)-INN
c

DO 100 J=JSTART,JSTOP
VIKK(J,NN) = VIKK(J,NN)/SIG(KK,6NN)
100 CONTINUE

c
JX(I,KK) =1
NNX(I,KK) =1 ;
VX(I,KK) = VIKK(3,1) G'
c
DO 400 NN=1,NN2P1
INN = 1/NN
JSTART = 2*N(NN)+INN
JSTOP = JMAX2-N(NN)-INN
C

DO 400 J=JSTART,JSTOP
IF(VX(I,KK).GT.VIKK(J,NN)) GOTO 400
JX(I.RK) = J
NNX(I,KK) = NN
VX(I,RK) = VIKK(J,NN)

400 CONTINUE

RETURN

END
c
Chhdkdkkhkkkhdkhhhhkhkhhhkiokkhkhkhkhkhhikhkhhhkikkhkkkidkrkhhhkhkkidkkkhkkkkkkkkk
o

SUBROUTINE TDOUT(TNR,GAIN, ISEED)

C

C** PRINTS OUTPUT OF SUBROUTINE 'TD'

c
COMMON /XCDNS/ JX(64,5),NNX(64,5),VX(64,5)
COMMON /SPARAM/ JMAX,NMAX,JAVG,JDEC

c

IF(ISEED.EQ.1) WRITE(23,95)
IF(ISEED.EQ.1) WRITE(23,100)
IF(ISEED.EQ.1) WRITE(23,110)
95 FORMAT(1X,' ',/)
100 FORMAT(' ', 1X,!® TNR IX JX K N GAIN')
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c
c

C** PRINTS OUTPUT SUMMARY OF SNR GAIN PERFORMANCE

c

[p)

100

200
300
400
500
600

(o]

700

(o]

0
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FoRMAT(Zx,l ----- -- as --- LX) -—m-e ')
FORMAT(4X,F5.2,6X,12,4X,13,4X,12,6X,12,5X,F7.3,/)
IX=1
JX0 = JX(1,1)
KKX = 1

NNXO = NNX(1,1)

VKO = VX(1,1)

DO 300 I = 1,64

DO 300 KK = 1,5
IF(VX(I,KK).LE.VX0) GO TO 300
IX=1
JX0 = JX(I,KK)
KKX = KK

NNXO = NNX(I,KK)
VX0 = VX(I,RK)
CONTINUE

JDEC*JX0

K = 2**(KKX-1)

N = JDEC*2**(NNXO-1)

GAIN = VXO/TNR

WRITE(23,210) TNR,IX,J,K,N,GAIN

J

RETURN
END

SUBROUTINE GOUT(ITRIAL,ISKIP)

REAL*¢ GAIN
COMMON  /GAYN/ GAIN(1000)

WRITE(23,100)
WRITE(23,200)
WRITE(23,300)
WRITE(23,400)
WRITE(23,500)

FORMAT(1X,*' ',//,

1 RRRARRRRRA KRR KRRRRIIIRAFIAIIR AR KRR KKAKRK KRR KKKk | 7))
FORMAT (12X, 'SUMMARY OF SNR GAIN PERFORHANCE )
FORMAT(12X,'«=====ccccrccccccurccreccncana- YLD
FORMAT(' ',4X,'TRIALS',4X,'GMIN',? ,'GHAX',7X,'GAVE',7X,'GSIGHA')
FORMAT(' ',4%,'===--- 1,3, ' eemm=- ',3(4%, ' mm-ee- )

FORMAT (6X, I3 4(4X F7. 3))

DO 700 ITRL = 2,ITRIAL

ITST = ISKIP * (ITRL / ISKIP)

IF(ITST.NE.ITRL) GO TO 700

CALL STATSS(GAIN,ITRL,GMIN,GMAX,GAVE,GVAR,GSIGMA,A,B)
WRITE(23,600) ITRL,GMIN,GM2X,GAVE,GSIGMA

CONTINUE

WRITE(23,100)

RETURN
END
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DO 50 IVEC=1,NR

GENERATE NEW PAIR
GENERATE FIRST UNIFORM NUMBER

IF (K.EQ.2) GO TO 40

K= 2

2=1*X

J = IFIX(SNGL(2))

X = 2 - DFLOAT(J) + DFLOAT(J)/P
X =2 -  DBLE(J) + DBLE(J)/P

X1 = TWO * X - ONE
IF(X1.EQ.0) GO TO 10
IF(X1.GT.ONE) GO TO 10
GENERATE SECOND UNIFORM NUMBER
Z = IA *AX
J = IFIX(SNGL(Z))

AX = 2 - DFLOAT(J) + DFLOAT(J)/P
AX = 2 - DBLE(J) + DBLE(J)/P
X2 = TWO * AX -ONE

1F(X2.EQ.0) GO TO 20
IF(X2.GT.ONE) GO TO 20
DETERMINE ACCEPTANCE/REJECTION
Y1 = X1*X1 + X2*X2
IF(Y1.EQ.0) GO TO 10
IF(Y1.LT.ONE) GO TO 30
GO TO 10
TRANSFORMATION TO NORMAL DISTRIBUTION
Yl = X1 * DSQRT(-TWO * DLOG(Y1l)/Y1l)
Y2 = Y1 * (X2/X1)
XVEC(IVEC) = Y1
GO TO 50
K=1
XVEC(IVEC) = Y2

50 CONTINUE

RETURN
END

BLOCK DATA

INTEGER*2 K

REAL*8 I,IA,P,Y2
COMMON/HOLD/I1,IA,P,¥2 K

DATA K/1/,1/4194305.D0/,1A/2097153.D0/
DATA P/2147483647.D0/,¥2/0.D0/

END
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